These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 34299280)
21. Molecular characterization of a novel vegetative insecticidal protein from Bacillus thuringiensis effective against sap-sucking insect pest. Sattar S; Maiti MK J Microbiol Biotechnol; 2011 Sep; 21(9):937-46. PubMed ID: 21952370 [TBL] [Abstract][Full Text] [Related]
22. The progress in insect cross-resistance among Bacillus thuringiensis toxins. Wei J; Zhang Y; An S Arch Insect Biochem Physiol; 2019 Nov; 102(3):e21547. PubMed ID: 30864250 [TBL] [Abstract][Full Text] [Related]
23. Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified delta-endotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud. Tang W; Tian Y J Exp Bot; 2003 Feb; 54(383):835-44. PubMed ID: 12554726 [TBL] [Abstract][Full Text] [Related]
24. Bacillus thuringiensis toxins: an overview of their biocidal activity. Palma L; Muñoz D; Berry C; Murillo J; Caballero P Toxins (Basel); 2014 Dec; 6(12):3296-325. PubMed ID: 25514092 [TBL] [Abstract][Full Text] [Related]
25. Signal pathways involved in microbe-nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes. Liang LM; Zou CG; Xu J; Zhang KQ Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1767):20180317. PubMed ID: 30967028 [TBL] [Abstract][Full Text] [Related]
26. The Prospect of Hydrolytic Enzymes from Ajuna HB; Lim HI; Moon JH; Won SJ; Choub V; Choi SI; Yun JY; Ahn YS Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069212 [TBL] [Abstract][Full Text] [Related]
27. Fighting the global pest problem: preface to the special Toxicon issue on insecticidal toxins and their potential for insect pest control. Nicholson GM Toxicon; 2007 Mar; 49(4):413-22. PubMed ID: 17223148 [TBL] [Abstract][Full Text] [Related]
28. Integration of microbial biopesticides in greenhouse floriculture: The Canadian experience. Brownbridge M; Buitenhuis R J Invertebr Pathol; 2019 Jul; 165():4-12. PubMed ID: 29196232 [TBL] [Abstract][Full Text] [Related]
29. Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Betz FS; Hammond BG; Fuchs RL Regul Toxicol Pharmacol; 2000 Oct; 32(2):156-73. PubMed ID: 11067772 [TBL] [Abstract][Full Text] [Related]
30. Optimal Pest Control Strategies with Cost-effectiveness Analysis. Fitri IR; Hanum F; Kusnanto A; Bakhtiar T ScientificWorldJournal; 2021; 2021():6630193. PubMed ID: 34012361 [TBL] [Abstract][Full Text] [Related]
31. Expression of an engineered synthetic cry2Aa (D42/K63F/K64P) gene of Bacillus thuringiensis in marker free transgenic tobacco facilitated full-protection from cotton leaf worm (S. littoralis) at very low concentration. Gayen S; Mandal CC; Samanta MK; Dey A; Sen SK World J Microbiol Biotechnol; 2016 Apr; 32(4):62. PubMed ID: 26925624 [TBL] [Abstract][Full Text] [Related]
32. Insight into vital role of autophagy in sustaining biological control potential of fungal pathogens against pest insects and nematodes. Ying SH; Feng MG Virulence; 2019 Dec; 10(1):429-437. PubMed ID: 30257619 [TBL] [Abstract][Full Text] [Related]
33. Development and characterisation of transgenic rice expressing two Bacillus thuringiensis genes. Yang Z; Chen H; Tang W; Hua H; Lin Y Pest Manag Sci; 2011 Apr; 67(4):414-22. PubMed ID: 21394874 [TBL] [Abstract][Full Text] [Related]
34. Strategies for Enhanced Crop Resistance to Insect Pests. Douglas AE Annu Rev Plant Biol; 2018 Apr; 69():637-660. PubMed ID: 29144774 [TBL] [Abstract][Full Text] [Related]
35. Tobacco plants expressing the Cry1AbMod toxin suppress tolerance to Cry1Ab toxin of Manduca sexta cadherin-silenced larvae. Porta H; Jiménez G; Cordoba E; León P; Soberón M; Bravo A Insect Biochem Mol Biol; 2011 Jul; 41(7):513-9. PubMed ID: 21621616 [TBL] [Abstract][Full Text] [Related]
38. Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: An insight on how artificial inoculation methods affect endophytic colonization of host plants. Bamisile BS; Dash CK; Akutse KS; Keppanan R; Afolabi OG; Hussain M; Qasim M; Wang L Microbiol Res; 2018 Dec; 217():34-50. PubMed ID: 30384907 [TBL] [Abstract][Full Text] [Related]
39. Construction of a recombinant Bacillus velezensis strain as an integrated control agent against plant diseases and insect pests. Roh JY; Liu Q; Choi JY; Wang Y; Shim HJ; Xu HG; Choi GJ; Kim JC; Je YH J Microbiol Biotechnol; 2009 Oct; 19(10):1223-9. PubMed ID: 19884784 [TBL] [Abstract][Full Text] [Related]
40. Microbial insecticides in Iran: History, current status, challenges and perspective. Karimi J; Dara SK; Arthurs S J Invertebr Pathol; 2019 Jul; 165():67-73. PubMed ID: 29476767 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]