BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 34299374)

  • 1. Effect of ZnSO
    Sun H; Fan Y; Sun X; Chen Z; Li H; Peng Z; Liu Z
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation on Mn
    Liu X; Chen Z; Sun H; Chen L; Peng Z; Liu Z
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32340312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The partial hydrogenation of benzene to cyclohexene by nanoscale ruthenium catalysts in imidazolium ionic liquids.
    Silveira ET; Umpierre AP; Rossi LM; Machado G; Morais J; Soares GV; Baumvol IJ; Teixeira SR; Fichtner PF; Dupont J
    Chemistry; 2004 Aug; 10(15):3734-40. PubMed ID: 15281157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enrichment of Zinc and Iron Micronutrients in Lentil (
    Dhaliwal SS; Sharma V; Shukla AK; Kaur J; Verma V; Singh P; Singh H; Abdel-Hafez SH; Sayed S; Gaber A; Ali R; Hossain A
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron Bioavailability from Ferric Pyrophosphate in Extruded Rice Cofortified with Zinc Sulfate Is Greater than When Cofortified with Zinc Oxide in a Human Stable Isotope Study.
    Hackl L; Zimmermann MB; Zeder C; Parker M; Johns PW; Hurrell RF; Moretti D
    J Nutr; 2017 Mar; 147(3):377-383. PubMed ID: 28148685
    [No Abstract]   [Full Text] [Related]  

  • 6. Zinc oxide and ferric oxide nanoparticles combination increase plant growth, yield, and quality of soybean under semiarid region.
    Yadav A; Babu S; Krishnan P; Kaur B; Bana RS; Chakraborty D; Kumar V; Joshi B; Lal SK
    Chemosphere; 2024 Mar; 352():141432. PubMed ID: 38368965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. trans-Fe(II)(H)2(diphosphine)(diamine) complexes as alternative catalysts for the asymmetric hydrogenation of ketones? A DFT study.
    Chen HY; Di Tommaso D; Hogarth G; Catlow CR
    Dalton Trans; 2011 Jan; 40(2):402-12. PubMed ID: 21103602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterophase-structured nanocrystals as superior supports for Ru-based catalysts in selective hydrogenation of benzene.
    Peng Z; Liu X; Li S; Li Z; Li B; Liu Z; Liu S
    Sci Rep; 2017 Jan; 7():39847. PubMed ID: 28057914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Levels of terpenoids, mangiferin and phenolic acids in the pulp and peel of ripe mango fruit influenced by pre-harvest spray application of FeSO
    Vithana MDK; Singh Z; Johnson SK
    Food Chem; 2018 Aug; 256():71-76. PubMed ID: 29606474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioavailability of iron in cottonseed meal, ferric sulfate, and two ferrous sulfate by-products of the galvanizing industry.
    Boling SD; Edwards HM; Emmert JL; Biehl RR; Baker DH
    Poult Sci; 1998 Sep; 77(9):1388-92. PubMed ID: 9733127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene.
    Liu X; Meng C; Han Y
    Nanoscale; 2012 Apr; 4(7):2288-95. PubMed ID: 22392351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ru/TiO₂ Nanostructured Catalysts: Synthesis, Characterization and Catalytic Activity Towards Hydrogenation of Ethyl Levulinate.
    Kumaravel S; Thiripuranthagan S; Erusappan E; Sivakumar A; Kumaravel S; Natesan B; Rajendran K
    J Nanosci Nanotechnol; 2021 Dec; 21(12):6160-6167. PubMed ID: 34229817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and nitrile hydrogenation performance of Ru nanoparticles on a K-doped Al2O3 surface.
    Muratsugu S; Kityakarn S; Wang F; Ishiguro N; Kamachi T; Yoshizawa K; Sekizawa O; Uruga T; Tada M
    Phys Chem Chem Phys; 2015 Oct; 17(38):24791-802. PubMed ID: 26344789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruthenium nanoparticles on nano-level-controlled carbon supports as highly effective catalysts for arene hydrogenation.
    Takasaki M; Motoyama Y; Higashi K; Yoon SH; Mochida I; Nagashima H
    Chem Asian J; 2007 Dec; 2(12):1524-33. PubMed ID: 17973283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organophilic worm-like ruthenium nanoparticles catalysts by the modification of CTAB on montmorillonite supports.
    Zhou L; Qi X; Jiang X; Zhou Y; Fu H; Chen H
    J Colloid Interface Sci; 2013 Feb; 392():201-205. PubMed ID: 23141762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient conversion of d-glucose into d-sorbitol over MCM-41 supported Ru catalyst prepared by a formaldehyde reduction process.
    Zhang J; Lin L; Zhang J; Shi J
    Carbohydr Res; 2011 Aug; 346(11):1327-32. PubMed ID: 21601181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-Assisted Synthesis of Zirconium Phosphate Nanoplatelet-Supported Ru-Anadem Nanostructures and Their Catalytic Study for the Hydrogenation of Acetophenone.
    Li X; Ding G; Thompson BL; Hao L; Deming DA; Heiden ZM; Zhang Q
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30670-30679. PubMed ID: 32515936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Sulfuric Acid on the Performance of Ruthenium-based Catalysts in the Liquid-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone.
    Ftouni J; Genuino HC; Muñoz-Murillo A; Bruijnincx PCA; Weckhuysen BM
    ChemSusChem; 2017 Jul; 10(14):2891-2896. PubMed ID: 28603841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ formed "weakly ligated/labile ligand" iridium(0) nanoparticles and aggregates as catalysts for the complete hydrogenation of neat benzene at room temperature and mild pressures.
    Bayram E; Zahmakiran M; Ozkar S; Finke RG
    Langmuir; 2010 Jul; 26(14):12455-64. PubMed ID: 20536218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogenation of Ethylbenzene Over Ru/
    Oh SK; Ku H; Han GB; Jeong B; Park YK; Jeon JK
    J Nanosci Nanotechnol; 2021 Jul; 21(7):4116-4120. PubMed ID: 33715756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.