These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34299844)

  • 1. Application of a High-Precision Aeolian Sand Collector in Field Wind and Sand Surveys.
    Liu X; Kang Y; Chen H; Lu H
    Int J Environ Res Public Health; 2021 Jul; 18(14):. PubMed ID: 34299844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress.
    Martin RL; Kok JF
    Sci Adv; 2017 Jun; 3(6):e1602569. PubMed ID: 28630907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a combined measurement and modeling method to quantify windblown dust emissions from the exposed playa at Mono Lake, California.
    Ono D; Kiddoo P; Howard C; Davis G; Richmond K
    J Air Waste Manag Assoc; 2011 Oct; 61(10):1036-45. PubMed ID: 22070036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amount and characteristics of microplastic and organic matter in wind-blown sediment at different heights within the aeolian sand saltation layer.
    Tian X; Yang M; Guo Z; Chang C; Li J; Guo Z; Li H; Wang R; Li Q; Zhang J; Zou X
    Environ Pollut; 2023 Jun; 327():121615. PubMed ID: 37054872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saltation of non-spherical sand particles.
    Wang Z; Ren S; Huang N
    PLoS One; 2014; 9(8):e105208. PubMed ID: 25170614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of saltation emission in the Kubuqi Desert, North China.
    Du H; Xue X; Wang T
    Sci Total Environ; 2014 May; 479-480():77-92. PubMed ID: 24534701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The physics of wind-blown sand and dust.
    Kok JF; Parteli EJ; Michaels TI; Karam DB
    Rep Prog Phys; 2012 Oct; 75(10):106901. PubMed ID: 22982806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.
    Wang M; Wei W; Ruan Z; He Q; Ge R
    Environ Monit Assess; 2013 Jun; 185(6):4819-34. PubMed ID: 23099859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Method for Estimation of Aeolian Sand Transport Rate Using Ceramic Sand Flux Sensor (UD-101).
    Udo K
    Sensors (Basel); 2009; 9(11):9058-72. PubMed ID: 22291553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring fast-temporal sediment fluxes with an analogue acoustic sensor: a wind tunnel study.
    Poortinga A; van Minnen J; Keijsers J; Riksen M; Goossens D; Seeger M
    PLoS One; 2013; 8(9):e74007. PubMed ID: 24058512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastic mulch film induced soil microplastic enrichment and its impact on wind-blown sand and dust.
    Tian X; Yang M; Guo Z; Chang C; Li J; Guo Z; Wang R; Li Q; Zou X
    Sci Total Environ; 2022 Mar; 813():152490. PubMed ID: 34958841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparisons suggest more efforts are required to parameterize wind flow around shrub vegetation elements for predicting aeolian flux.
    Fu LT
    Sci Rep; 2019 Mar; 9(1):3841. PubMed ID: 30846835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effectiveness of a multi-row Tamarix windbreak in reducing aeolian erosion and sediment flux, Niatak area, Iran.
    Torshizi MR; Miri A; Shahriari A; Dong Z; Davidson-Arnott R
    J Environ Manage; 2020 Jul; 265():110486. PubMed ID: 32292166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soil organic carbon (SOC) enrichment in aeolian sediments and SOC loss by dust emission in the desert steppe, China.
    Du H; Li S; Webb NP; Zuo X; Liu X
    Sci Total Environ; 2021 Dec; 798():149189. PubMed ID: 34333433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wind-induced dust generation and transport mechanics on a bare agricultural field.
    Zobeck TM; Van Pelt RS
    J Hazard Mater; 2006 Apr; 132(1):26-38. PubMed ID: 16423453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical modeling of wind-blown sand on Mars.
    Huang H; Bo T; Zheng X
    Eur Phys J E Soft Matter; 2014 Sep; 37(9):36. PubMed ID: 25236498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Estimation of the effect derived from wind erosion of soil and dust emission in Tianjin suburbs on the central district based on WEPS model].
    Chen L; Han TT; Li T; Ji YQ; Bai ZP; Wang B
    Huan Jing Ke Xue; 2012 Jul; 33(7):2197-203. PubMed ID: 23002591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wind tunnel and field evaluation of various dust suppressants.
    Preston CA; McKenna Neuman C; Boulton JW
    J Air Waste Manag Assoc; 2020 Sep; 70(9):915-931. PubMed ID: 32584212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of electrostatic force on the evolution of sand saltation cloud.
    Zheng XJ; Huang N; Zhou Y
    Eur Phys J E Soft Matter; 2006 Feb; 19(2):129-38. PubMed ID: 16491314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential Use of BEST® Sediment Trap in Splash - Saltation Transport Process by Simultaneous Wind and Rain Tests.
    Basaran M; Uzun O; Cornelis W; Gabriels D; Erpul G
    PLoS One; 2016; 11(11):e0166924. PubMed ID: 27898716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.