These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 34300048)

  • 1. Heart Metabolism in Sepsis-Induced Cardiomyopathy-Unusual Metabolic Dysfunction of the Heart.
    Wasyluk W; Nowicka-Stążka P; Zwolak A
    Int J Environ Res Public Health; 2021 Jul; 18(14):. PubMed ID: 34300048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac Energy Metabolism in Heart Failure.
    Lopaschuk GD; Karwi QG; Tian R; Wende AR; Abel ED
    Circ Res; 2021 May; 128(10):1487-1513. PubMed ID: 33983836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart.
    Jaswal JS; Keung W; Wang W; Ussher JR; Lopaschuk GD
    Biochim Biophys Acta; 2011 Jul; 1813(7):1333-50. PubMed ID: 21256164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retained Metabolic Flexibility of the Failing Human Heart.
    Watson WD; Green PG; Lewis AJM; Arvidsson P; De Maria GL; Arheden H; Heiberg E; Clarke WT; Rodgers CT; Valkovič L; Neubauer S; Herring N; Rider OJ
    Circulation; 2023 Jul; 148(2):109-123. PubMed ID: 37199155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy.
    Fillmore N; Mori J; Lopaschuk GD
    Br J Pharmacol; 2014 Apr; 171(8):2080-90. PubMed ID: 24147975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fuel availability and fate in cardiac metabolism: A tale of two substrates.
    Pascual F; Coleman RA
    Biochim Biophys Acta; 2016 Oct; 1861(10):1425-33. PubMed ID: 26993579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic remodelling of the failing heart: beneficial or detrimental?
    van Bilsen M; van Nieuwenhoven FA; van der Vusse GJ
    Cardiovasc Res; 2009 Feb; 81(3):420-8. PubMed ID: 18854380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Myocardial Substrate Metabolism in the Failing Heart: Ready for Prime Time?
    Yurista SR; Chen S; Welsh A; Tang WHW; Nguyen CT
    Curr Heart Fail Rep; 2022 Aug; 19(4):180-190. PubMed ID: 35567658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways to Therapeutic Targets.
    Fukushima A; Milner K; Gupta A; Lopaschuk GD
    Curr Pharm Des; 2015; 21(25):3654-64. PubMed ID: 26166604
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Lee SR; Mukae M; Jeong KJ; Park SH; Shin HJ; Kim SW; Won YS; Kwun HJ; Baek IJ; Hong EJ
    Cells; 2023 Feb; 12(5):. PubMed ID: 36899888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic remodelling of glucose, fatty acid and redox pathways in the heart of type 2 diabetic mice.
    Cortassa S; Caceres V; Tocchetti CG; Bernier M; de Cabo R; Paolocci N; Sollott SJ; Aon MA
    J Physiol; 2020 Apr; 598(7):1393-1415. PubMed ID: 30462352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Flexibility of the Heart: The Role of Fatty Acid Metabolism in Health, Heart Failure, and Cardiometabolic Diseases.
    Actis Dato V; Lange S; Cho Y
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust suppression of cardiac energy catabolism with marked accumulation of energy substrates during lipopolysaccharide-induced cardiac dysfunction in mice.
    Umbarawan Y; Syamsunarno MRAA; Obinata H; Yamaguchi A; Sunaga H; Matsui H; Hishiki T; Matsuura T; Koitabashi N; Obokata M; Hanaoka H; Haque A; Kunimoto F; Tsushima Y; Suematsu M; Kurabayashi M; Iso T
    Metabolism; 2017 Dec; 77():47-57. PubMed ID: 28941596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear receptor signaling and cardiac energetics.
    Huss JM; Kelly DP
    Circ Res; 2004 Sep; 95(6):568-78. PubMed ID: 15375023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabetic cardiomyopathy.
    Feuvray D
    Arch Mal Coeur Vaiss; 2004 Mar; 97(3):261-5. PubMed ID: 15106750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload.
    Doenst T; Pytel G; Schrepper A; Amorim P; Färber G; Shingu Y; Mohr FW; Schwarzer M
    Cardiovasc Res; 2010 Jun; 86(3):461-70. PubMed ID: 20035032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profiling substrate fluxes in the isolated working mouse heart using 13C-labeled substrates: focusing on the origin and fate of pyruvate and citrate carbons.
    Khairallah M; Labarthe F; Bouchard B; Danialou G; Petrof BJ; Des Rosiers C
    Am J Physiol Heart Circ Physiol; 2004 Apr; 286(4):H1461-70. PubMed ID: 14670819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency.
    Ho KL; Zhang L; Wagg C; Al Batran R; Gopal K; Levasseur J; Leone T; Dyck JRB; Ussher JR; Muoio DM; Kelly DP; Lopaschuk GD
    Cardiovasc Res; 2019 Sep; 115(11):1606-1616. PubMed ID: 30778524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy.
    Zhang L; Jaswal JS; Ussher JR; Sankaralingam S; Wagg C; Zaugg M; Lopaschuk GD
    Circ Heart Fail; 2013 Sep; 6(5):1039-48. PubMed ID: 23861485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adropin regulates cardiac energy metabolism and improves cardiac function and efficiency.
    Altamimi TR; Gao S; Karwi QG; Fukushima A; Rawat S; Wagg CS; Zhang L; Lopaschuk GD
    Metabolism; 2019 Sep; 98():37-48. PubMed ID: 31202835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.