These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 34300086)

  • 1. Development of Machine Learning Models for Prediction of Osteoporosis from Clinical Health Examination Data.
    Ou Yang WY; Lai CC; Tsou MT; Hwang LC
    Int J Environ Res Public Health; 2021 Jul; 18(14):. PubMed ID: 34300086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women.
    Shim JG; Kim DW; Ryu KH; Cho EA; Ahn JH; Kim JI; Lee SH
    Arch Osteoporos; 2020 Oct; 15(1):169. PubMed ID: 33097976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis.
    Lin YT; Chu CY; Hung KS; Lu CH; Bednarczyk EM; Chen HY
    Comput Methods Programs Biomed; 2022 Oct; 225():107028. PubMed ID: 35930862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Machine Learning Models for Prediction of Smoking Cessation Outcome.
    Lai CC; Huang WH; Chang BC; Hwang LC
    Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33807561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoporosis risk prediction using machine learning and conventional methods.
    Kim SK; Yoo TK; Oh E; Kim DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():188-91. PubMed ID: 24109656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years.
    Shim JG; Ryu KH; Cho EA; Ahn JH; Kim HK; Lee YJ; Lee SH
    Medicina (Kaunas); 2021 Nov; 57(11):. PubMed ID: 34833448
    [No Abstract]   [Full Text] [Related]  

  • 7. Developing and comparing deep learning and machine learning algorithms for osteoporosis risk prediction.
    Qiu C; Su K; Luo Z; Tian Q; Zhao L; Wu L; Deng H; Shen H
    Front Artif Intell; 2024; 7():1355287. PubMed ID: 38919268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree.
    Li K; Shi Q; Liu S; Xie Y; Liu J
    Medicine (Baltimore); 2021 May; 100(19):e25813. PubMed ID: 34106618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of machine learning algorithms to identify people with low bone density.
    Xu R; Chen Y; Yao Z; Wu W; Cui J; Wang R; Diao Y; Jin C; Hong Z; Li X
    Front Public Health; 2024; 12():1347219. PubMed ID: 38726233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning.
    Yoo TK; Kim SK; Kim DW; Choi JY; Lee WH; Oh E; Park EC
    Yonsei Med J; 2013 Nov; 54(6):1321-30. PubMed ID: 24142634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of fatty liver disease using machine learning algorithms.
    Wu CC; Yeh WC; Hsu WD; Islam MM; Nguyen PAA; Poly TN; Wang YC; Yang HC; Jack Li YC
    Comput Methods Programs Biomed; 2019 Mar; 170():23-29. PubMed ID: 30712601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Validation of Unplanned Extubation Prediction Models Using Intensive Care Unit Data: Retrospective, Comparative, Machine Learning Study.
    Hur S; Min JY; Yoo J; Kim K; Chung CR; Dykes PC; Cha WC
    J Med Internet Res; 2021 Aug; 23(8):e23508. PubMed ID: 34382940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and internal validation of a machine-learning-developed model for predicting 1-year mortality after fragility hip fracture.
    Kitcharanant N; Chotiyarnwong P; Tanphiriyakun T; Vanitcharoenkul E; Mahaisavariya C; Boonyaprapa W; Unnanuntana A
    BMC Geriatr; 2022 May; 22(1):451. PubMed ID: 35610589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction model for the risk of osteoporosis incorporating factors of disease history and living habits in physical examination of population in Chongqing, Southwest China: based on artificial neural network.
    Wang Y; Wang L; Sun Y; Wu M; Ma Y; Yang L; Meng C; Zhong L; Hossain MA; Peng B
    BMC Public Health; 2021 May; 21(1):991. PubMed ID: 34039329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Lumbar Drainage-Related Meningitis Based on Supervised Machine Learning Algorithms.
    Wang P; Cheng S; Li Y; Liu L; Liu J; Zhao Q; Luo S
    Front Public Health; 2022; 10():910479. PubMed ID: 35836985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning outperformed logistic regression classification even with limit sample size: A model to predict pediatric HIV mortality and clinical progression to AIDS.
    Domínguez-Rodríguez S; Serna-Pascual M; Oletto A; Barnabas S; Zuidewind P; Dobbels E; Danaviah S; Behuhuma O; Lain MG; Vaz P; Fernández-Luis S; Nhampossa T; Lopez-Varela E; Otwombe K; Liberty A; Violari A; Maiga AI; Rossi P; Giaquinto C; Kuhn L; Rojo P; Tagarro A;
    PLoS One; 2022; 17(10):e0276116. PubMed ID: 36240212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models.
    Rau CS; Kuo PJ; Chien PC; Huang CY; Hsieh HY; Hsieh CH
    PLoS One; 2018; 13(11):e0207192. PubMed ID: 30412613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning-based prediction of osteoporosis in postmenopausal women with clinical examined features: A quantitative clinical study.
    Ullah KA; Rehman F; Anwar M; Faheem M; Riaz N
    Health Sci Rep; 2023 Oct; 6(10):e1656. PubMed ID: 37900094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model.
    Lin K; Hu Y; Kong G
    Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.