These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34300435)

  • 1. Vibration Property of a Cryogenic Optical Resonator within a Pulse-Tube Cryostat.
    Ye Y; He L; Sun Y; Zhang F; Wang Z; Lu Z; Zhang J
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-stable cryogenic sapphire cavity laser with an instability reaching 2 × 10
    He L; Zhang J; Wang Z; Chang J; Wu Q; Lu Z; Zhang J
    Opt Lett; 2023 May; 48(10):2519-2522. PubMed ID: 37186697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simplified cryogenic optical resonator apparatus providing ultra-low frequency drift.
    Wiens E; Kwong CJ; Müller T; Schiller S
    Rev Sci Instrum; 2020 Apr; 91(4):045112. PubMed ID: 32357702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical frequency reference based on a cryogenic silicon resonator.
    Wiens E; Kwong CJ; Müller T; Bongs K; Singh Y; Schiller S
    Opt Express; 2023 Dec; 31(25):42059-42076. PubMed ID: 38087588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cryogenic torsion balance using a liquid-cryogen free, ultra-low vibration cryostat.
    Fleischer SM; Ross MP; Venkateswara K; Hagedorn CA; Shaw EA; Swanson E; Heckel BR; Gundlach JH
    Rev Sci Instrum; 2022 Jun; 93(6):064505. PubMed ID: 35777998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon single-crystal cryogenic optical resonator.
    Wiens E; Chen QF; Ernsting I; Luckmann H; Rosowski U; Nevsky A; Schiller S
    Opt Lett; 2014 Jun; 39(11):3242-5. PubMed ID: 24876023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic fountain clock with very high frequency stability employing a pulse-tube-cryocooled sapphire oscillator.
    Takamizawa A; Yanagimachi S; Tanabe T; Hagimoto K; Hirano I; Watabe K; Ikegami T; Hartnett JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1463-9. PubMed ID: 25167146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh long-term dimensional stability of a sapphire cryogenic optical resonator.
    Storz R; Braxmaier C; Jäck K; Pradl O; Schiller S
    Opt Lett; 1998 Jul; 23(13):1031-3. PubMed ID: 18087419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ultrastable 1397-nm laser stabilized by a crystalline-coated room-temperature cavity.
    Zhu XQ; Cui XY; Kong DQ; Yu HW; Zhai XM; Zheng MY; Xie XP; Zhang Q; Jiang X; Zhang XB; Xu P; Dai HN; Chen YA; Pan JW
    Rev Sci Instrum; 2024 Aug; 95(8):. PubMed ID: 39120445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryogenic sapphire oscillator using a low-vibration design pulse-tube cryocooler: first results.
    Hartnett J; Nand N; Wang C; Floch JM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1034-8. PubMed ID: 20442014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications.
    Micke P; Stark J; King SA; Leopold T; Pfeifer T; Schmöger L; Schwarz M; Spieß LJ; Schmidt PO; Crespo López-Urrutia JR
    Rev Sci Instrum; 2019 Jun; 90(6):065104. PubMed ID: 31254988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancements in Optical Resonator Stability: Principles, Technologies, and Applications.
    Li H; Li D; Lou Q; Liu C; Lan T; Yu X
    Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser stabilization to a cryogenic fiber ring resonator.
    Merkel B; Repp D; Reiserer A
    Opt Lett; 2021 Jan; 46(2):444-447. PubMed ID: 33449049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-stable dry cryostat for variable temperature break junction.
    Gemma A; Zulji A; Hurtak F; Fatayer S; Kittel A; Calame M; Gotsmann B
    Rev Sci Instrum; 2021 Dec; 92(12):123704. PubMed ID: 34972437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral phase noise analysis of a cryogenically cooled Ti:Sapphire amplifier.
    Nagymihaly RS; Jojart P; Borzsonyi A; Osvay K
    Opt Express; 2017 Mar; 25(6):6690-6699. PubMed ID: 28381013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active impedance matching of a cryogenic radio frequency resonator for ion traps.
    Schubert M; Kilzer L; Dubielzig T; Schilling M; Ospelkaus C; Hampel B
    Rev Sci Instrum; 2022 Sep; 93(9):093201. PubMed ID: 36182479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the effect of external noise pickups on the performance of a cryogenic bolometer.
    Garai A; Reza A; Mazumdar A; Krishnamoorthy H; Gupta G; Pose MS; Mallikarjunachary S; Nanal V; Pillay RG; Ramakrishnan S
    Rev Sci Instrum; 2019 Sep; 90(9):096104. PubMed ID: 31575278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing current noise in cryogenic experiments by vacuum-insulated cables.
    Mykkänen E; Lehtinen JS; Kemppinen A; Krause C; Drung D; Nissilä J; Manninen AJ
    Rev Sci Instrum; 2016 Oct; 87(10):105111. PubMed ID: 27802750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quartz resonator instabilities under cryogenic conditions.
    Goryachev M; Galliou S; Abbe P; Bourgeois PY; Grop S; Dubois B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):21-9. PubMed ID: 22293732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibration isolation with high thermal conductance for a cryogen-free dilution refrigerator.
    de Wit M; Welker G; Heeck K; Buters FM; Eerkens HJ; Koning G; van der Meer H; Bouwmeester D; Oosterkamp TH
    Rev Sci Instrum; 2019 Jan; 90(1):015112. PubMed ID: 30709182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.