These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 34300447)

  • 21. Trajectory-level fog detection based on in-vehicle video camera with TensorFlow deep learning utilizing SHRP2 naturalistic driving data.
    Khan MN; Ahmed MM
    Accid Anal Prev; 2020 Jul; 142():105521. PubMed ID: 32408146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling rear-end collisions including the role of driver's visibility and light truck vehicles using a nested logit structure.
    Abdel-Aty M; Abdelwahab H
    Accid Anal Prev; 2004 May; 36(3):447-56. PubMed ID: 15003590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Safety critical event prediction through unified analysis of driver and vehicle volatilities: Application of deep learning methods.
    Arvin R; Khattak AJ; Qi H
    Accid Anal Prev; 2021 Mar; 151():105949. PubMed ID: 33385957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Field tests and machine learning approaches for refining algorithms and correlations of driver's model parameters.
    Tango F; Minin L; Tesauri F; Montanari R
    Appl Ergon; 2010 Mar; 41(2):211-24. PubMed ID: 19286165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fatal crash between a car operating with automated control systems and a tractor-semitrailer truck.
    Poland K; McKay MP; Bruce D; Becic E
    Traffic Inj Prev; 2018; 19(sup2):S153-S156. PubMed ID: 30841795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can vehicle longitudinal jerk be used to identify aggressive drivers? An examination using naturalistic driving data.
    Feng F; Bao S; Sayer JR; Flannagan C; Manser M; Wunderlich R
    Accid Anal Prev; 2017 Jul; 104():125-136. PubMed ID: 28499141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of age, speed and duration of monotonous driving task in traffic on the driver's useful visual field.
    Rogé J; Pébayle T; Lambilliotte E; Spitzenstetter F; Giselbrecht D; Muzet A
    Vision Res; 2004 Oct; 44(23):2737-44. PubMed ID: 15358068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Attention Horizon as a Predictor for the Fuel Consumption Rate of Drivers.
    Sarmadi H; Nowaczyk S; Prytz R; Simão M
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Longitudinal control behaviour: Analysis and modelling based on experimental surveys in Italy and the UK.
    Pariota L; Bifulco GN; Galante F; Montella A; Brackstone M
    Accid Anal Prev; 2016 Apr; 89():74-87. PubMed ID: 26828955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SafeDrive: Hybrid Recommendation System Architecture for Early Safety Predication Using Internet of Vehicles.
    Nouh R; Singh M; Singh D
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring drivers' mental workload and visual demand while using an in-vehicle HMI for eco-safe driving.
    Li X; Vaezipour A; Rakotonirainy A; Demmel S; Oviedo-Trespalacios O
    Accid Anal Prev; 2020 Oct; 146():105756. PubMed ID: 32919220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Portable System for Monitoring and Controlling Driver Behavior and the Use of a Mobile Phone While Driving.
    Khandakar A; Chowdhury MEH; Ahmed R; Dhib A; Mohammed M; Al-Emadi NAMA; Michelson D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improve Aggressive Driver Recognition Using Collision Surrogate Measurement and Imbalanced Class Boosting.
    Wang K; Xue Q; Xing Y; Li C
    Int J Environ Res Public Health; 2020 Mar; 17(7):. PubMed ID: 32244469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating the impact of Heavy Goods Vehicle driver monitoring and coaching to reduce risky behaviour.
    Mase JM; Majid S; Mesgarpour M; Torres MT; Figueredo GP; Chapman P
    Accid Anal Prev; 2020 Oct; 146():105754. PubMed ID: 32932020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intelligent Research Based on Deep Learning Recognition Method in Vehicle-Road Cooperative Information Interaction System.
    Jiao H
    Comput Intell Neurosci; 2022; 2022():4921211. PubMed ID: 35814543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inferring the Driver's Lane Change Intention through LiDAR-Based Environment Analysis Using Convolutional Neural Networks.
    Díaz-Álvarez A; Clavijo M; Jiménez F; Serradilla F
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33440897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On-road motor vehicle emissions and fuel consumption in urban driving conditions.
    Tong HY; Hung WT; Cheung CS
    J Air Waste Manag Assoc; 2000 Apr; 50(4):543-54. PubMed ID: 10786006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of the connected vehicle environment on tunnel entrance zone.
    Li Z; Xing G; Zhao X; Li H
    Accid Anal Prev; 2021 Jul; 157():106145. PubMed ID: 34020757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recognition Method of Vehicle Cluster Situation Based on Set Pair Logic considering Driver's Cognition.
    Liu S; Wang X; Bai C; Shi H; Zhang Y; Zhong F; Liu Y
    Comput Intell Neurosci; 2021; 2021():9809279. PubMed ID: 34527047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vehicle Trajectory Estimation Based on Fusion of Visual Motion Features and Deep Learning.
    Qu L; Dailey MN
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.