BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 34300552)

  • 1. An Automated Pipeline for Dynamic Detection of Sub-Surface Metal Loss Defects across Cold Thermography Images.
    Doshvarpassand S; Wang X
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-Surface Defect Depth Approximation in Cold Infrared Thermography.
    Doshvarpassand S; Wang X
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Thinning Detection through Image Segmentation Using Equivalent Array-Type Lamp-Based Lock-in Thermography.
    Lee S; Chung Y; Kim C; Kim W
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extension of the Thermographic Signal Reconstruction Technique for an Automated Segmentation and Depth Estimation of Subsurface Defects.
    Schager A; Zauner G; Mayr G; Burgholzer P
    J Imaging; 2020 Sep; 6(9):. PubMed ID: 34460753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introduction of Deep Learning in Thermographic Monitoring of Cultural Heritage and Improvement by Automatic Thermogram Pre-Processing Algorithms.
    Garrido I; Erazo-Aux J; Lagüela S; Sfarra S; Ibarra-Castanedo C; Pivarčiová E; Gargiulo G; Maldague X; Arias P
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33499344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermographic Inspection of Internal Defects in Steel Structures: Analysis of Signal Processing Techniques in Pulsed Thermography.
    Chung Y; Shrestha R; Lee S; Kim W
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Impact Damage Detection Technique for Composites Based on Thermographic Image Processing and Machine Learning Classification.
    Alhammad M; Avdelidis NP; Ibarra-Castanedo C; Torbali ME; Genest M; Zhang H; Zolotas A; Maldgue XPV
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Defects in Geomembranes Using Quasi-Active Infrared Thermography.
    Ma Y; Rose F; Wong L; Vien BS; Kuen T; Rajic N; Kodikara J; Chiu W
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data Enhancement via Low-Rank Matrix Reconstruction in Pulsed Thermography for Carbon-Fibre-Reinforced Polymers.
    Ebrahimi S; Fleuret JR; Klein M; Théroux LD; Ibarra-Castanedo C; Maldague XPV
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised learning-enabled pulsed infrared thermographic microscopy of subsurface defects in stainless steel.
    Zhang X; Fang T; Saniie J; Bakhtiari S; Heifetz A
    Sci Rep; 2024 Jun; 14(1):14865. PubMed ID: 38937533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principal Component Thermography for Defect Detection in Concrete.
    Milovanović B; Gaši M; Gumbarević S
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32668679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method to produce high contrast vein visualization in active dynamic thermography (ADT).
    Saxena A; Ng EYK; Canchi T; Lim JL; Beruvar AS
    Comput Biol Med; 2021 May; 132():104309. PubMed ID: 33735761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diabetic Plantar Foot Segmentation in Active Thermography Using a Two-Stage Adaptive Gamma Transform and a Deep Neural Network.
    Cao Z; Zeng Z; Xie J; Zhai H; Yin Y; Ma Y; Tian Y
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principal component analysis-based imaging angle determination for 3D motion monitoring using single-slice on-board imaging.
    Chen T; Zhang M; Jabbour S; Wang H; Barbee D; Das IJ; Yue N
    Med Phys; 2018 Jun; 45(6):2377-2387. PubMed ID: 29635762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nondestructive Evaluation of Composite Bonding Structure Used in Electrical Insulation Based on Active Infrared Thermography.
    Guo C; Liu L; Mei H; Tu Y; Wang L
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diabetic foot ulcer mobile detection system using smart phone thermal camera: a feasibility study.
    Fraiwan L; AlKhodari M; Ninan J; Mustafa B; Saleh A; Ghazal M
    Biomed Eng Online; 2017 Oct; 16(1):117. PubMed ID: 28974212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverse Contrast in Non-Destructive Materials Research by Using Active Thermography.
    Noszczyk P; Nowak H
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30871015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection and Characterization of Package Defects and Integrity Failure using Dynamic Scanning Infrared Thermography (DSIRT).
    Morris SA
    J Food Sci; 2016 Feb; 81(2):E388-95. PubMed ID: 26720916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Impact of Excitation Periods on the Outcome of Lock-In Thermography.
    Sapieta M; Dekýš V; Kopas P; Jakubovičová L; Šavrnoch Z
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.