These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34300585)

  • 21. AutoTune: Automatically Tuning Convolutional Neural Networks for Improved Transfer Learning.
    Basha SHS; Vinakota SK; Pulabaigari V; Mukherjee S; Dubey SR
    Neural Netw; 2021 Jan; 133():112-122. PubMed ID: 33181405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endoscopy Artefact Detection by Deep Transfer Learning of Baseline Models.
    Yin TK; Huang KL; Chiu SR; Yang YQ; Chang BR
    J Digit Imaging; 2022 Oct; 35(5):1101-1110. PubMed ID: 35478060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.
    Shin HC; Roth HR; Gao M; Lu L; Xu Z; Nogues I; Yao J; Mollura D; Summers RM
    IEEE Trans Med Imaging; 2016 May; 35(5):1285-98. PubMed ID: 26886976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Deep Learning-Based Method for Automatic Assessment of Stomatal Index in Wheat Microscopic Images of Leaf Epidermis.
    Zhu C; Hu Y; Mao H; Li S; Li F; Zhao C; Luo L; Liu W; Yuan X
    Front Plant Sci; 2021; 12():716784. PubMed ID: 34539710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization.
    Zhao Y; Ge F; Liu T
    Med Image Anal; 2018 Jul; 47():111-126. PubMed ID: 29705574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust SAR Automatic Target Recognition Based on Transferred MS-CNN with L
    Zhai Y; Deng W; Xu Y; Ke Q; Gan J; Sun B; Zeng J; Piuri V
    Comput Intell Neurosci; 2019; 2019():9140167. PubMed ID: 31915430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying Patient-Ventilator Asynchrony on a Small Dataset Using Image-Based Transfer Learning.
    Pan Q; Jia M; Liu Q; Zhang L; Pan J; Lu F; Zhang Z; Fang L; Ge H
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34204238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Learning hidden patterns from patient multivariate time series data using convolutional neural networks: A case study of healthcare cost prediction.
    Morid MA; Sheng ORL; Kawamoto K; Abdelrahman S
    J Biomed Inform; 2020 Nov; 111():103565. PubMed ID: 32980530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection and Recognition of Pollen Grains in Multilabel Microscopic Images.
    Kubera E; Kubik-Komar A; Kurasiński P; Piotrowska-Weryszko K; Skrzypiec M
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Application of convolutional neural network to risk evaluation of positive circumferential resection margin of rectal cancer by magnetic resonance imaging].
    Xu JH; Zhou XM; Ma JL; Liu SS; Zhang MS; Zheng XF; Zhang XY; Liu GW; Zhang XX; Lu Y; Wang DS
    Zhonghua Wei Chang Wai Ke Za Zhi; 2020 Jun; 23(6):572-577. PubMed ID: 32521977
    [No Abstract]   [Full Text] [Related]  

  • 32. Detection and identification of tea leaf diseases based on AX-RetinaNet.
    Bao W; Fan T; Hu G; Liang D; Li H
    Sci Rep; 2022 Feb; 12(1):2183. PubMed ID: 35140287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic Detection and Counting of Wheat Spikelet Using Semi-Automatic Labeling and Deep Learning.
    Qiu R; He Y; Zhang M
    Front Plant Sci; 2022; 13():872555. PubMed ID: 35707612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating Convolutional Neural Networks for Cage-Free Floor Egg Detection.
    Li G; Xu Y; Zhao Y; Du Q; Huang Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery.
    Hong SJ; Han Y; Kim SY; Lee AY; Kim G
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detecting cells in intravital video microscopy using a deep convolutional neural network.
    Gregório da Silva BC; Tam R; Ferrari RJ
    Comput Biol Med; 2021 Feb; 129():104133. PubMed ID: 33285356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks.
    Alawad M; Gao S; Qiu JX; Yoon HJ; Blair Christian J; Penberthy L; Mumphrey B; Wu XC; Coyle L; Tourassi G
    J Am Med Inform Assoc; 2020 Jan; 27(1):89-98. PubMed ID: 31710668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation.
    Essa E; Aldesouky D; Hussein SE; Rashad MZ
    Med Biol Eng Comput; 2020 Sep; 58(9):2161-2175. PubMed ID: 32681214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facial Expression Recognition Based on Weighted-Cluster Loss and Deep Transfer Learning Using a Highly Imbalanced Dataset.
    Ngo QT; Yoon S
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32380751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep learning networks for the recognition and quantitation of surface-enhanced Raman spectroscopy.
    Weng S; Yuan H; Zhang X; Li P; Zheng L; Zhao J; Huang L
    Analyst; 2020 Jul; 145(14):4827-4835. PubMed ID: 32515435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.