These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34300589)

  • 1. Design of Grating Al
    Park CH; Kim JY; Sung SJ; Kim DH; Do YS
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se
    Vermang B; Wätjen JT; Fjällström V; Rostvall F; Edoff M; Kotipalli R; Henry F; Flandre D
    Prog Photovolt; 2014 Oct; 22(10):1023-1029. PubMed ID: 26300619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Importance of Joint Mitigation Strategies for Front, Bulk, and Rear Recombination in Ultrathin Cu(In,Ga)Se
    Lopes TS; de Wild J; Rocha C; Violas A; Cunha JMV; Teixeira JP; Curado MA; Oliveira AJN; Borme J; Birant G; Brammertz G; Fernandes PA; Vermang B; Salomé PMP
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27713-27725. PubMed ID: 34086435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voids and compositional inhomogeneities in Cu(In,Ga)Se
    Avancini E; Keller D; Carron R; Arroyo-Rojas Dasilva Y; Erni R; Priebe A; Di Napoli S; Carrisi M; Sozzi G; Menozzi R; Fu F; Buecheler S; Tiwari AN
    Sci Technol Adv Mater; 2018; 19(1):871-882. PubMed ID: 30479675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Conversion Efficiency of Cu(In,Ga)Se2 Solar Cells via Electrochemical Passivation Treatment.
    Tsai HW; Thomas SR; Chen CW; Wang YC; Tsai HS; Yen YT; Hsu CH; Tsai WC; Wang ZM; Chueh YL
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7777-82. PubMed ID: 26815164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se
    Alhammadi S; Park H; Kim WK
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced efficiency of Cu
    Zhang B; Han L; Ying S; Li Y; Yao B
    RSC Adv; 2018 May; 8(34):19213-19219. PubMed ID: 35539659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the Al-Doped ZnO Sputter-Deposition Temperature on Cu(In,Ga)Se
    Park H; Alhammadi S; Minnam Reddy VR; Park C; Kim WK
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Si-Doping Effects in Cu(In,Ga)Se
    Ishizuka S; Koida T; Taguchi N; Tanaka S; Fons P; Shibata H
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):31119-31128. PubMed ID: 28829112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composition-Dependent Passivation Efficiency at the CdS/CuIn
    Ballabio M; Fuertes Marrón D; Barreau N; Bonn M; Cánovas E
    Adv Mater; 2020 Mar; 32(9):e1907763. PubMed ID: 31984586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Efficiency CIGS Solar Cells by Bulk Defect Passivation through Ag Substituting Strategy.
    Zhao Y; Yuan S; Kou D; Zhou Z; Wang X; Xiao H; Deng Y; Cui C; Chang Q; Wu S
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12717-12726. PubMed ID: 32101686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-antireflective scheme for efficiency enhancement of Cu(In,Ga)Se2 nanotip array solar cells.
    Liao YK; Wang YC; Yen YT; Chen CH; Hsieh DH; Chen SC; Lee CY; Lai CC; Kuo WC; Juang JY; Wu KH; Cheng SJ; Lai CH; Lai FI; Kuo SY; Kuo HC; Chueh YL
    ACS Nano; 2013 Aug; 7(8):7318-29. PubMed ID: 23906340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passivation of Deep-Level Defects by Cesium Fluoride Post-Deposition Treatment for Improved Device Performance of Cu(In,Ga)Se
    Lee H; Jang Y; Nam SW; Jung C; Choi PP; Gwak J; Yun JH; Kim K; Shin B
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35653-35660. PubMed ID: 31525944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Luminescent down-shifting CsPbBr
    Kim YC; Jeong HJ; Kim ST; Song YH; Kim BY; Kim JP; Kang BK; Yun JH; Jang JH
    Nanoscale; 2020 Jan; 12(2):558-562. PubMed ID: 31777889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Over 16% Efficient Solution-Processed Cu(In,Ga)Se
    Gao Q; Yuan S; Zhou Z; Kou D; Zhou W; Meng Y; Qi Y; Han L; Wu S
    Small; 2022 Sep; 18(39):e2203443. PubMed ID: 36026573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron-Selective TiO2 Contact for Cu(In,Ga)Se2 Solar Cells.
    Hsu W; Sutter-Fella CM; Hettick M; Cheng L; Chan S; Chen Y; Zeng Y; Zheng M; Wang HP; Chiang CC; Javey A
    Sci Rep; 2015 Nov; 5():16028. PubMed ID: 26526426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wet Pretreatment-Induced Modification of Cu(In,Ga)Se
    Hwang S; Larina L; Lee H; Kim S; Choi KS; Jeon C; Ahn BT; Shin B
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20920-20928. PubMed ID: 29806770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Above 15% Efficient Directly Sputtered CIGS Solar Cells Enabled by a Modified Back-Contact Interface.
    Dai W; Gao Z; Li J; Qin S; Wang R; Xu H; Wang X; Gao C; Teng X; Zhang Y; Hao X; Wang Y; Yu W
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49414-49422. PubMed ID: 34615348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural, Electrical, and Optical Properties of ZnO Film Used as Buffer Layer for CIGS Thin-Film Solar Cell.
    Choi EC; Cha JH; Jung DY; Hong B
    J Nanosci Nanotechnol; 2016 May; 16(5):5087-91. PubMed ID: 27483877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BTO-Coupled CIGS Solar Cells with High Performances.
    Li C; Luo H; Gu H; Li H
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.