These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34300598)

  • 1. Reconstruction of Microscopic Thermal Fields from Oversampled Infrared Images in Laser-Based Powder Bed Fusion.
    Stanger L; Rockett T; Lyle A; Davies M; Anderson M; Todd I; Basoalto H; Willmott JR
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process Monitoring Using Synchronized Path Infrared Thermography in PBF-LB/M.
    Höfflin D; Sauer C; Schiffler A; Hartmann J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser Powder Bed Fusion of Metal Coated Copper Powders.
    Lindström V; Liashenko O; Zweiacker K; Derevianko S; Morozovych V; Lyashenko Y; Leinenbach C
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser powder bed fusion of titanium-tantalum alloys: Compositions and designs for biomedical applications.
    Huang S; Sing SL; de Looze G; Wilson R; Yeong WY
    J Mech Behav Biomed Mater; 2020 Aug; 108():103775. PubMed ID: 32469713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Situ Alloy Formation of a WMoTaNbV Refractory Metal High Entropy Alloy by Laser Powder Bed Fusion (PBF-LB/M).
    Huber F; Bartels D; Schmidt M
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Particle Size Distribution with Efficient Packing on Powder Flowability and Selective Laser Melting Process.
    Young Z; Qu M; Coday MM; Guo Q; Hojjatzadeh SMH; Escano LI; Fezzaa K; Chen L
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On thermal properties of metallic powder in laser powder bed fusion additive manufacturing.
    Zhang S; Lane B; Whiting J; Chou K
    J Manuf Process; 2019; 47():. PubMed ID: 32855624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low Temperature Powder Bed Fusion of Polymers by Means of Fractal Quasi-Simultaneous Exposure Strategies.
    Schlicht S; Greiner S; Drummer D
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST.
    Lane B; Moylan S; Whitenton E; Ma L
    Rapid Prototyp J; 2016; 22(5):778-787. PubMed ID: 28058036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate determination of laser spot position during laser powder bed fusion process thermography.
    Zhirnov I; Mekhontsev S; Lane B; Grantham S; Bura N
    Manuf Lett; 2020; 23():. PubMed ID: 32855904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion.
    Lane B; Whitenton E; Moylan S
    Proc SPIE Int Soc Opt Eng; 2016; 986104():. PubMed ID: 32165779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eutectic In Situ Modification of Polyamide 12 Processed through Laser-Based Powder Bed Fusion.
    Schlicht S; Drummer D
    Materials (Basel); 2023 Mar; 16(5):. PubMed ID: 36903165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion.
    Cheng B; Lane B; Whiting J; Chou K
    J Manuf Sci Eng; 2018; 140():. PubMed ID: 30996585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Calibration Strategy for Validation of Finite Element Thermal Analysis of Selective Laser Melting Process Using Bayesian Optimization.
    Kusano M; Kitano H; Watanabe M
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the use of an infrared spectrum hyperpixel array imager to measure temperature during additive and subtractive manufacturing.
    Whitenton E; Heigel J; Lane B; Moylan S
    Proc SPIE Int Soc Opt Eng; 2016; 9861():. PubMed ID: 32116403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Powder Characteristics on Processability of AlSi12 Alloy Fabricated by Selective Laser Melting.
    Baitimerov R; Lykov P; Zherebtsov D; Radionova L; Shultc A; Prashanth KG
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29735932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 316L Stainless Steel Powders for Additive Manufacturing: Relationships of Powder Rheology, Size, Size Distribution to Part Properties.
    Groarke R; Danilenkoff C; Karam S; McCarthy E; Michel B; Mussatto A; Sloane J; O' Neill A; Raghavendra R; Brabazon D
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online Monitoring Technology of Metal Powder Bed Fusion Processes: A Review.
    Hou ZJ; Wang Q; Zhao CG; Zheng J; Tian JM; Ge XH; Liu YG
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches.
    Ansari MJ; Nguyen DS; Park HS
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas Atomization of Duplex Stainless Steel Powder for Laser Powder Bed Fusion.
    Cui C; Stern F; Ellendt N; Uhlenwinkel V; Steinbacher M; Tenkamp J; Walther F; Fechte-Heinen R
    Materials (Basel); 2023 Jan; 16(1):. PubMed ID: 36614774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.