BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 34300748)

  • 21. Eco-Friendly Fired Brick Produced from Industrial Ash and Natural Clay: A Study of Waste Reuse.
    Doğan-Sağlamtimur N; Bilgil A; Szechyńska-Hebda M; Parzych S; Hebda M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lightweight bricks manufactured from ground soil, textile sludge, and coal ash.
    Chen C; Wu H
    Environ Technol; 2018 Jun; 39(11):1359-1367. PubMed ID: 28488931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sustainable use of tannery sludge in brick manufacturing in Bangladesh.
    Juel MAI; Mizan A; Ahmed T
    Waste Manag; 2017 Feb; 60():259-269. PubMed ID: 28081994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recycling of marble waste: A review based on strength of concrete containing marble waste.
    Tugrul Tunc E
    J Environ Manage; 2019 Feb; 231():86-97. PubMed ID: 30340136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing.
    Mao L; Wu Y; Zhang W; Huang Q
    J Environ Manage; 2019 Feb; 231():780-787. PubMed ID: 30415171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental analysis to utilize the solid wastes in brick production.
    Varadarajan R; Govindan V
    J Environ Sci Eng; 2013 Jul; 55(3):343-50. PubMed ID: 25509952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of Waste Marble Powder on the Mechanical Properties of High-Strength Concrete and Evaluation of Its Shear Strength.
    El-Mandouh MA; Hu JW; Mohamed AS; Abd El-Maula AS
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving the Thermal Performance and Energy Efficiency of Buildings by Incorporating Biomass Waste into Clay Bricks.
    Ahmed S; El Attar ME; Zouli N; Abutaleb A; Maafa IM; Ahmed MM; Yousef A; Ragab A
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A practical proposal for solving the world's cigarette butt problem: Recycling in fired clay bricks.
    Mohajerani A; Kadir AA; Larobina L
    Waste Manag; 2016 Jun; 52():228-44. PubMed ID: 26975623
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Technological Characterization of PET-Polyethylene Terephthalate-Added Soil-Cement Bricks.
    da Silva TR; Cecchin D; de Azevedo ARG; Valadão I; Alexandre J; da Silva FC; Marvila MT; Gunasekaran M; Garcia Filho F; Monteiro SN
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Response surface methodology-based optimisation of cost and compressive strength of rubberised concrete incorporating burnt clay brick powder.
    Sinkhonde D; Onchiri RO; Oyawa WO; Mwero JN
    Heliyon; 2021 Dec; 7(12):e08565. PubMed ID: 34917825
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Environmental and Economic Benefits of Using Pomegranate Peel Waste for Insulation Bricks.
    Ragab A; Zouli N; Abutaleb A; Maafa IM; Ahmed MM; Yousef A
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sludge valorization from wastewater treatment plant to its application on the ceramic industry.
    Martínez-García C; Eliche-Quesada D; Pérez-Villarejo L; Iglesias-Godino FJ; Corpas-Iglesias FA
    J Environ Manage; 2012 Mar; 95 Suppl():S343-8. PubMed ID: 21723033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of waste glass additions on quality of textile sludge-based bricks.
    Rahman A; Urabe T; Kishimoto N; Mizuhara S
    Environ Technol; 2015; 36(19):2443-50. PubMed ID: 25812619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Durability Assessment and Microstructure of High-Strength Performance Bricks Produced from PET Waste and Foundry Sand.
    Aneke FI; Awuzie BO; Mostafa MMH; Okorafor C
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Management of waste from stone processing industry.
    Prasanna K; Joseph K
    J Environ Sci Eng; 2007 Oct; 49(4):273-6. PubMed ID: 18476374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Soil-Cement Bricks Development Using Polymeric Waste.
    Metzker SLO; Sabino TPF; Mendes JF; Ribeiro AGC; Mendes RF
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):21034-21048. PubMed ID: 34748178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of Limestone Waste Addition for Fired Clay Bricks.
    Thalmaier G; Cobȋrzan N; Balog AA; Constantinescu H; Ceclan A; Voinea M; Marinca TF
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of recycled glass substitution on the physical and mechanical properties of clay bricks.
    Loryuenyong V; Panyachai T; Kaewsimork K; Siritai C
    Waste Manag; 2009 Oct; 29(10):2717-21. PubMed ID: 19545990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy efficient production of clay bricks using industrial waste.
    P N ML; Peter C; Mohan K; Greens S; George S
    Heliyon; 2018 Oct; 4(10):e00891. PubMed ID: 30465029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.