These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34300837)

  • 1. Flow Field Analysis Inside and at the Outlet of the Abrasive Head.
    Riha Z; Zelenak M; Soucek K; Hlavacek A
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet.
    Kang C; Liu H
    Materials (Basel); 2013 Aug; 6(8):3514-3529. PubMed ID: 28811449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of cutting quality and surface roughness in abrasive water jet machining of bone.
    Shakouri E; Abbasi M
    Proc Inst Mech Eng H; 2018 Sep; 232(9):850-861. PubMed ID: 30052115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revised Model of Abrasive Water Jet Cutting for Industrial Use.
    Hlaváč LM
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the Influence of Selected Technological Parameters on the Morphology Parameters of the Cutting Surfaces of the Hardox 500 Material Cut by Abrasive Water Jet Technology.
    Krenicky T; Olejarova S; Servatka M
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abrasive water jet cutting as a new procedure for cutting cancellous bone--in vitro testing in comparison with the oscillating saw.
    Schwieger K; Carrero V; Rentzsch R; Becker A; Bishop N; Hille E; Louis H; Morlock M; Honl M
    J Biomed Mater Res B Appl Biomater; 2004 Nov; 71(2):223-8. PubMed ID: 15382033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Notes on the Abrasive Water Jet (AWJ) Machining.
    Gembalová L; Hlaváč LM; Spadło S; Geryk V; Oros L
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations.
    Hariharan P; Giarra M; Reddy V; Day SW; Manning KB; Deutsch S; Stewart SF; Myers MR; Berman MR; Burgreen GW; Paterson EG; Malinauskas RA
    J Biomech Eng; 2011 Apr; 133(4):041002. PubMed ID: 21428676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research into the Disintegration of Abrasive Materials in the Abrasive Water Jet Machining Process.
    Perec A
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Topography Analysis of Mg-Based Composites with Different Nanoparticle Contents Disintegrated Using Abrasive Water Jet.
    Mardi KB; Dixit AR; Pramanik A; Hvizdos P; Mallick A; Nag A; Hloch S
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of the synergistic effect of cavitation and micro-abrasive particles.
    Fu Y; Zhu X; Wang J; Gong T
    Ultrason Sonochem; 2022 Sep; 89():106119. PubMed ID: 35969914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Nozzle Geometry on the Flow Dynamics and Resistance Inside and Outside the Cone-Straight Nozzle.
    Jiang T; Huang Z; Li J; Zhou Y; Xiong C
    ACS Omega; 2022 Mar; 7(11):9652-9665. PubMed ID: 35356694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Simulation and Experimental Study for the Impact of In-Flow Nozzle on Spray Characteristics.
    Mohamed MAE; Abdel Hameed HE; ElShenawy EA; El-Salmawy HAA; Shaltout RE
    ACS Omega; 2021 Dec; 6(49):33498-33510. PubMed ID: 34926899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process Parameter Modeling and Optimization of Abrasive Water Jet Dressing Fixed-Abrasive Pad Based on Box-Behnken Design.
    Wang Z; Wang S; Ding Y; Yang Y; Ma L; Pang M; Han J; Su J
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow pattern and shear stress distribution of distal end-to-side anastomoses. A comparison of the instantaneous velocity fields obtained by particle image velocimetry.
    Heise M; Schmidt S; Krüger U; Rückert R; Rösler S; Neuhaus P; Settmacher U
    J Biomech; 2004 Jul; 37(7):1043-51. PubMed ID: 15165874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood flow through the ductus venosus in human fetus: calculation using Doppler velocimetry and computational findings.
    Pennati G; Bellotti M; Ferrazzi E; Bozzo M; Pardi G; Fumero R
    Ultrasound Med Biol; 1998 May; 24(4):477-87. PubMed ID: 9651957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Modeling Method for Material Removal Characteristics of Abrasive Water Jet Polishing under Rotating Oblique Incidence.
    Zhang Z; Song C; Shi F; Tie G; Zhang W; Wang B; Tian Y; Hou Z
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency of Tool Steel Cutting by Water Jet with Recycled Abrasive Materials.
    Perec A; Radomska-Zalas A; Fajdek-Bieda A; Kawecka E
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydraulic high-pressure nebulization of solutions and dispersions for respiratory drug delivery.
    Moore JM; Pham S; Wiedmann T
    Pharm Dev Technol; 2000; 5(1):105-13. PubMed ID: 10669924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.