These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34300882)

  • 1. Effect of Loading Frequency Ratio on Multiaxial Asynchronous Fatigue Failure of 30CrMnSiA Steel.
    Liu T; Qi X; Shi X; Gao L; Zhang T; Zhang J
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue Crack Growth Analysis under Constant Amplitude Loading Using Finite Element Method.
    Alshoaibi AM
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiaxial fatigue modeling for Nitinol shape memory alloys under in-phase loading.
    Mahtabi MJ; Shamsaei N
    J Mech Behav Biomed Mater; 2015 Mar; 55():236-249. PubMed ID: 26594783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fretting Fatigue with Cylindrical-On-Flat Contact: Crack Nucleation, Crack Path and Fatigue Life.
    Noraphaiphipaksa N; Manonukul A; Kanchanomai C
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue Crack Propagation Prediction of Corroded Steel Plate Strengthened with Carbon Fiber Reinforced Polymer (CFRP) Plates.
    Li A; Wang L; Xu S
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Residual Stress Field on the Fatigue Crack Propagation in Prestressing Steel Wires.
    Toribio J; Matos JC; González B; Escuadra J
    Materials (Basel); 2015 Nov; 8(11):7589-7597. PubMed ID: 28793661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic Propagation of Fatigue Cracks in Welded Joints of Steel Bridge Decks under Simulated Traffic Loading.
    Lu N; Liu J; Wang H; Yuan H; Luo Y
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Analysis of Fatigue Crack Growth Path and Life Predictions for Linear Elastic Material.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Very High Cycle Fatigue Failure Analysis and Life Prediction of Cr-Ni-W Gear Steel Based on Crack Initiation and Growth Behaviors.
    Deng H; Li W; Sakai T; Sun Z
    Materials (Basel); 2015 Dec; 8(12):8338-8354. PubMed ID: 28793714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ANN and LEFM-Based Fatigue Reliability Analysis and Truck Weight Limits of Steel Bridges after Crack Detection.
    Nie L; Wang W; Deng L; He W
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on Short Fatigue Crack Behaviour of LZ50 Steel Under Non-Proportional Loading.
    Yang B; Liao Z; Xiao S; Yang G; Zhu T; Zhang X
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Stress Ratio and Loading Frequency on the Corrosion Fatigue Behavior of Smooth Steel Wire in Different Solutions.
    Wang S; Zhang D; Hu N; Zhang J
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue Life of Aluminum Alloys Based on Shear and Hydrostatic Strain.
    Łagoda T; Głowacka K; Kurek A
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33138233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Life-Dependent Material Parameters to Fatigue Life Prediction under Multiaxial and Non-Zero Mean Loading.
    Kluger K; Karolczuk A; Derda S
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32235605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromechanical Modelling of the Influence of Strain Ratio on Fatigue Crack Initiation in a Martensitic Steel-A Comparison of Different Fatigue Indicator Parameters.
    Schäfer BJ; Sonnweber-Ribic P; Ul Hassan H; Hartmaier A
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31487915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extremely-Low-Cycle Fatigue Damage for Beam-to-Column Welded Joints Using Structural Details.
    Huang L; Qu W; Zhao E
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32283852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.
    Yu ZY; Zhu SP; Liu Q; Liu Y
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28792487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Shot Peening on Fretting Fatigue Crack Initiation Behavior.
    Liu X; Liu J; Zuo Z; Zhang H
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30836696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Microstructures and Fatigue Properties for Dual-Phase Pipeline Steels by Gleeble Simulation of Heat-Affected Zone.
    Zhao Z; Xu P; Cheng H; Miao J; Xiao F
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31226851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Approach for Predicting the Low-Cycle-Fatigue Crack Initiation Life of Ultrafine-Grained Aluminum Alloy Considering Inhomogeneous Deformation and Microscale Multiaxial Strain.
    Sun T; Qin L; Xie Y; Zheng Z; Xie C; Huang Z
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.