BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 34300948)

  • 1. Ti Addition Effect on the Grain Structure Evolution and Thermoelectric Transport Properties of Hf
    Cho J; Park T; Bae KW; Kim HS; Choi SM; Kim SI; Kim SW
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Pressure-Sintering-Induced Microstructural Engineering for an Ultimate Phonon Scattering of Thermoelectric Half-Heusler Compounds.
    He R; Zhu T; Ying P; Chen J; Giebeler L; Kühn U; Grossman JC; Wang Y; Nielsch K
    Small; 2021 Aug; 17(33):e2102045. PubMed ID: 34235845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelectric transport properties of (Ti
    Rabin D; Kyratsi T; Fuks D; Gelbstein Y
    Phys Chem Chem Phys; 2020 Jan; 22(3):1566-1574. PubMed ID: 31872833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase Formation Behavior and Thermoelectric Transport Properties of
    Lee KH; Bae SH; Choi SM
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31877993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of C and N Addition on Thermoelectric Properties of TiNiSn Half-Heusler Compounds.
    Dow HS; Kim WS; Shin WH
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29419772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of grain boundary scattering in reducing the thermal conductivity of polycrystalline XNiSn (X = Hf, Zr, Ti) half-Heusler alloys.
    Schrade M; Berland K; Eliassen SNH; Guzik MN; Echevarria-Bonet C; Sørby MH; Jenuš P; Hauback BC; Tofan R; Gunnæs AE; Persson C; Løvvik OM; Finstad TG
    Sci Rep; 2017 Oct; 7(1):13760. PubMed ID: 29062049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low Lattice Thermal Conductivity in a Wider Temperature Range for Biphasic-Quaternary (Ti,V)CoSb Half-Heusler Alloys.
    Chauhan NS; Bhattacharjee D; Maiti T; Kolen'ko YV; Miyazaki Y; Bhattacharya A
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54736-54747. PubMed ID: 36450123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. n-Type TaCoSn-Based Half-Heuslers as Promising Thermoelectric Materials.
    Li S; Zhu H; Mao J; Feng Z; Li X; Chen C; Cao F; Liu X; Singh DJ; Ren Z; Zhang Q
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41321-41329. PubMed ID: 31609575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Thermoelectric Properties through Control of Nickel Interstitials and Phase Separation in Heusler/Half-Heusler TiNi
    Levin EE; Long F; Douglas JE; Buffon MLC; Lamontagne LK; Pollock TM; Seshadri R
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29843364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsically high thermoelectric figure of merit of half-Heusler ZrRuTe.
    Keshri SP; Medhi A
    J Phys Condens Matter; 2020 Jul; 32(42):. PubMed ID: 32544886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Panoscopically optimized thermoelectric performance of a half-Heusler/full-Heusler based in situ bulk composite Zr(0.7)Hf(0.3)Ni(1+x)Sn: an energy and time efficient way.
    Bhardwaj A; Chauhan NS; Sancheti B; Pandey GN; Senguttuvan TD; Misra DK
    Phys Chem Chem Phys; 2015 Nov; 17(44):30090-101. PubMed ID: 26499748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Thermoelectric Properties of Nb-Doped Ti(FeCoNi)Sb Pseudo-Ternary Half-Heusler Alloys Prepared Using the Microwave Method.
    Zhang R; Kong J; Hou Y; Zhao L; Zhu J; Li C; Zhao D
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring structural, mechanical, and thermoelectric properties of half-Heusler compounds RhBiX (X = Ti, Zr, Hf): A first-principles investigation.
    Wei J; Guo Y; Wang G
    RSC Adv; 2023 Apr; 13(17):11513-11524. PubMed ID: 37063731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong electron-phonon coupling and high lattice thermal conductivity in half-Heusler thermoelectric materials.
    Wang R; Cai J; Zhang Q; Tan X; Wu J; Liu G; Jiang J
    Phys Chem Chem Phys; 2024 Mar; 26(11):8932-8937. PubMed ID: 38433622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Spark Plasma Sintering on the Structure and Properties of Ti
    Downie RA; Popuri SR; Ning H; Reece MJ; Bos JG
    Materials (Basel); 2014 Oct; 7(10):7093-7104. PubMed ID: 28788234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic and thermoelectric properties of CoFeYGe (Y  =  Ti, Cr) quaternary Heusler alloys: first principle calculations.
    Haleoot R; Hamad B
    J Phys Condens Matter; 2020 Feb; 32(7):075402. PubMed ID: 31671416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Half-Heusler Interfacial Structure on Thermal Transport Properties of (Ti, Zr)NiSn Alloys.
    Sato M; Chai YW; Kimura Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25503-25512. PubMed ID: 34009948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.
    Fu C; Bai S; Liu Y; Tang Y; Chen L; Zhao X; Zhu T
    Nat Commun; 2015 Sep; 6():8144. PubMed ID: 26330371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced Lattice Thermal Conductivity for Half-Heusler ZrNiSn through Cryogenic Mechanical Alloying.
    Bahrami A; Ying P; Wolff U; Rodríguez NP; Schierning G; Nielsch K; He R
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38561-38568. PubMed ID: 34351145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation.
    Rausch E; Balke B; Ouardi S; Felser C
    Phys Chem Chem Phys; 2014 Dec; 16(46):25258-62. PubMed ID: 25162747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.