These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 34301034)

  • 21. Piezoelectric Multi-Channel Bilayer Transducer for Sensing and Filtering Ossicular Vibration.
    Yüksel MB; Atik AC; Külah H
    Adv Sci (Weinh); 2024 Apr; 11(16):e2308277. PubMed ID: 38380504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human studies of a piezoelectric transducer and a microphone for a totally implantable electronic hearing device.
    Zenner HP; Leysieffer H; Maassen M; Lehner R; Lenarz T; Baumann J; Keiner S; Plinkert PK; McElveen JT
    Am J Otol; 2000 Mar; 21(2):196-204. PubMed ID: 10733184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester.
    Aranda JJ; Bader S; Oelmann B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.
    Wang P; Du H
    Rev Sci Instrum; 2015 Jul; 86(7):075002. PubMed ID: 26233403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perovskite Piezoelectric-Based Flexible Energy Harvesters for Self-Powered Implantable and Wearable IoT Devices.
    Pattipaka S; Bae YM; Jeong CK; Park KI; Hwang GT
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Implantable Cardiac Kirigami-Inspired Lead-Based Energy Harvester Fabricated by Enhanced Piezoelectric Composite Film.
    Xu Z; Jin C; Cabe A; Escobedo D; Gruslova A; Jenney S; Closson AB; Dong L; Chen Z; Feldman MD; Zhang JXJ
    Adv Healthc Mater; 2021 Apr; 10(8):e2002100. PubMed ID: 33434407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [An implantable piezoelectric hearing aid transducer for inner ear hearing loss. I: Development of a prototype].
    Leysieffer H; Baumann JW; Müller G; Zenner HP
    HNO; 1997 Oct; 45(10):792-800. PubMed ID: 9445852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical aspects in implantable microphones and hearing aids and development of a concept with a hydroacoustical transmission.
    Hüttenbrink KB; Zahnert TH; Bornitz M; Hofmann G
    Acta Otolaryngol; 2001 Jan; 121(2):185-9. PubMed ID: 11349775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Piezoelectric Energy Harvesting Design Principles for Materials and Structures: Material Figure-of-Merit and Self-Resonance Tuning.
    Song HC; Kim SW; Kim HS; Lee DG; Kang CY; Nahm S
    Adv Mater; 2020 Dec; 32(51):e2002208. PubMed ID: 33006178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design optimization of PVDF-based piezoelectric energy harvesters.
    Song J; Zhao G; Li B; Wang J
    Heliyon; 2017 Sep; 3(9):e00377. PubMed ID: 28948235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple and Efficient AlN-Based Piezoelectric Energy Harvesters.
    Gablech I; Klempa J; Pekárek J; Vyroubal P; Hrabina J; Holá M; Kunz J; Brodský J; Neužil P
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 32012859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo characterization of piezoelectric transducers for implantable hearing AIDS.
    Javel E; Grant IL; Kroll K
    Otol Neurotol; 2003 Sep; 24(5):784-95. PubMed ID: 14501457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Speech quality evaluation of subcutaneously implanted microphone using in vivo experiment.
    Woo ST; Lee G; Jung ES; Lim HG; Seong KW; Lee JH; Kim MN; Cho JH
    Biomed Mater Eng; 2014; 24(6):3685-91. PubMed ID: 25227083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An experimental study on a piezoelectric vibration energy harvester for self-powered cardiac pacemakers.
    Xie F; Qian X; Li N; Cui D; Zhang H; Xu Z
    Ann Transl Med; 2021 May; 9(10):880. PubMed ID: 34164514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Piezoelectric Micromachined Ultrasound Transducer Technology: Recent Advances and Applications.
    He Y; Wan H; Jiang X; Peng C
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Micromachined Coupled-Cantilever for Piezoelectric Energy Harvesters.
    Vyas A; Staaf H; Rusu C; Ebefors T; Liljeholm J; Smith AD; Lundgren P; Enoksson P
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation.
    Yip M; Jin R; Nakajima HH; Stankovic KM; Chandrakasan AP
    IEEE J Solid-State Circuits; 2015 Jan; 50(1):214-229. PubMed ID: 26251552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Online Condition Monitoring of Rotating Machines by Self-Powered Piezoelectric Transducer from Real-Time Experimental Investigations.
    Khazaee M; Rosendahl LA; Rezania A
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The remaining obstacles for a totally implantable cochlear implant.
    Trudel M; Morris DP
    Curr Opin Otolaryngol Head Neck Surg; 2022 Oct; 30(5):298-302. PubMed ID: 36004785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.