These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 34301056)

  • 1. An Overview on Collagen and Gelatin-Based Cryogels: Fabrication, Classification, Properties and Biomedical Applications.
    He Y; Wang C; Wang C; Xiao Y; Lin W
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injectable Lignin-
    Abudula T; Colombani T; Alade T; Bencherif SA; Memić A
    Biomacromolecules; 2021 Oct; 22(10):4110-4121. PubMed ID: 34514795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering.
    Luo LJ; Lai JY; Chou SF; Hsueh YJ; Ma DH
    Acta Biomater; 2018 Jan; 65():123-136. PubMed ID: 29128534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility.
    Kemençe N; Bölgen N
    J Tissue Eng Regen Med; 2017 Jan; 11(1):20-33. PubMed ID: 23997022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocompatible scaffolds based on natural polymers for regenerative medicine.
    Akilbekova D; Shaimerdenova M; Adilov S; Berillo D
    Int J Biol Macromol; 2018 Jul; 114():324-333. PubMed ID: 29578021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marine collagen-chitosan-fucoidan cryogels as cell-laden biocomposites envisaging tissue engineering.
    Carvalho DN; López-Cebral R; Sousa RO; Alves AL; Reys LL; Silva SS; Oliveira JM; Reis RL; Silva TH
    Biomed Mater; 2020 Sep; 15(5):055030. PubMed ID: 32570224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional cryogels for biomedical applications.
    Razavi M; Qiao Y; Thakor AS
    J Biomed Mater Res A; 2019 Dec; 107(12):2736-2755. PubMed ID: 31408265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic modulation and epoxy functionalization of protein-mediated enoate ester-based hybrid cryogels.
    Er M; Orakdogen N
    Int J Biol Macromol; 2022 Dec; 223(Pt A):1158-1179. PubMed ID: 36375674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of gelatin cryogels reinforced with hydroxyapatites with different morphologies and interfacial bonding.
    Gu L; Zhang Y; Zhang L; Huang Y; Zuo D; Cai Q; Yang X
    Biomed Mater; 2020 Mar; 15(3):035012. PubMed ID: 32031987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of Gelatin and Gelatin/Hyaluronic Acid Cryogel Scaffolds for the 3D Culture of Mesothelial Cells and Mesothelium Tissue Regeneration.
    Kao HH; Kuo CY; Chen KS; Chen JP
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31547444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable Hyaluronic Acid-
    Rezaeeyazdi M; Colombani T; Memic A; Bencherif SA
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30087295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and Structural Engineering of Gelatin-Based Delivery Systems for Therapeutic Applications: A Review.
    Jia X; Fan X; Chen C; Lu Q; Zhou H; Zhao Y; Wang X; Han S; Ouyang L; Yan H; Dai H; Geng H
    Biomacromolecules; 2024 Feb; 25(2):564-589. PubMed ID: 38174643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications.
    Sharma A; Bhat S; Nayak V; Kumar A
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing Silk-Based Cryogels for Biomedical Applications.
    Abdullah T; Su E; Memić A
    Biomimetics (Basel); 2022 Dec; 8(1):. PubMed ID: 36648791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable Cryogels in Biomedicine.
    Çimen D; Özbek MA; Bereli N; Mattiasson B; Denizli A
    Gels; 2021 Apr; 7(2):. PubMed ID: 33915687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive review of cryogels and their roles in tissue engineering applications.
    Hixon KR; Lu T; Sell SA
    Acta Biomater; 2017 Oct; 62():29-41. PubMed ID: 28851666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of crosslinking methods on the structure and biocompatibility of polyvinyl alcohol/gelatin cryogels.
    Ceylan S; Göktürk D; Bölgen N
    Biomed Mater Eng; 2016 Sep; 27(4):327-340. PubMed ID: 27689567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable and reversible preformed cryogels based on chemically crosslinked gelatin methacrylate (GelMA) and physically crosslinked hyaluronic acid (HA) for soft tissue engineering.
    Jonidi Shariatzadeh F; Solouk A; Bagheri Khoulenjani S; Bonakdar S; Mirzadeh H
    Colloids Surf B Biointerfaces; 2021 Jul; 203():111725. PubMed ID: 33838583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell encapsulation and cryostorage in PVA-gelatin cryogels: incorporation of carboxylated ε-poly-L-lysine as cryoprotectant.
    Vrana NE; Matsumura K; Hyon SH; Geever LM; Kennedy JE; Lyons JG; Higginbotham CL; Cahill PA; McGuinness GB
    J Tissue Eng Regen Med; 2012 Apr; 6(4):280-90. PubMed ID: 21706775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryogels for biomedical applications.
    Henderson TMA; Ladewig K; Haylock DN; McLean KM; O'Connor AJ
    J Mater Chem B; 2013 Jun; 1(21):2682-2695. PubMed ID: 32260973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.