BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 3430114)

  • 1. Regulation of blood oxygen transport and red cell pHi after exhaustive activity in rainbow trout (Salmo gairdneri) and starry flounder (Platichthys stellatus).
    Milligan CL; Wood CM
    J Exp Biol; 1987 Nov; 133():263-82. PubMed ID: 3430114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-adrenergic control of blood oxygen affinity in acutely hypoxia exposed rainbow trout.
    Tetens V; Christensen NJ
    J Comp Physiol B; 1987; 157(5):667-75. PubMed ID: 2826555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of prolonged epinephrine infusion on the physiology of the rainbow trout, Salmo gairdneri. I. Blood respiratory, acid-base and ionic states.
    Perry SI; Vermette MG
    J Exp Biol; 1987 Mar; 128():235-53. PubMed ID: 3559464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses of the red blood cells from two high-energy-demand teleosts, yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis), to catecholamines.
    Lowe TE; Brill RW; Cousins KL
    J Comp Physiol B; 1998 Aug; 168(6):405-18. PubMed ID: 9747521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of catecholamines in erythrocyte pH regulation and oxygen transport in rainbow trout (Salmo gairdneri) during exercise.
    Primmett DR; Randall DJ; Mazeaud M; Boutilier RG
    J Exp Biol; 1986 May; 122():139-48. PubMed ID: 3723069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma catecholamines in the lesser spotted dogfish and rainbow trout at rest and during different levels of exercise.
    Butler PJ; Metcalfe JD; Ginley SA
    J Exp Biol; 1986 Jul; 123():409-21. PubMed ID: 3746197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The promotion of catecholamine release in rainbow trout, Salmo gairdneri, by acute acidosis: interactions between red cell pH and haemoglobin oxygen-carrying capacity.
    Boutilier RG; Iwama GK; Randall DJ
    J Exp Biol; 1986 Jul; 123():145-57. PubMed ID: 3091753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy metabolism in trout red cells: consequences of adrenergic stimulation in vivo and in vitro.
    Ferguson RA; Tufts BL; Boutilier RG
    J Exp Biol; 1989 May; 143():133-47. PubMed ID: 2732658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time course of red blood cell intracellular pH recovery following short-circuiting in relation to venous transit times in rainbow trout, Oncorhynchus mykiss.
    Harter TS; May AG; Federspiel WJ; Supuran CT; Brauner CJ
    Am J Physiol Regul Integr Comp Physiol; 2018 Aug; 315(2):R397-R407. PubMed ID: 29641235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of red blood cell metabolism in rainbow trout after exhaustive exercise.
    Wood CM; Walsh PJ; Thomas S; Perry SF
    J Exp Biol; 1990 Nov; 154():491-507. PubMed ID: 2126030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmentally-related changes in red cell levels of ionic modulators of hemoglobin-O2 affinity in rainbow trout, Salmo gairdneri.
    Houston AH; Tun N
    Comp Biochem Physiol A Comp Physiol; 1986; 85(4):779-83. PubMed ID: 2879683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consequences of catecholamine release on ventilation and blood oxygen transport during hypoxia and hypercapnia in an elasmobranch Squalus acanthias and a teleost Oncorhynchus mykiss.
    Perry S; Gilmour K
    J Exp Biol; 1996; 199(Pt 9):2105-18. PubMed ID: 9320017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control and consequences of adrenergic activation of red blood cell Na+/H+ exchange on blood oxygen and carbon dioxide transport in fish.
    Thomas S; Perry SF
    J Exp Zool; 1992 Aug; 263(2):160-75. PubMed ID: 1323642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic-membrane coupling in red blood cells of trout: the effects of anoxia and adrenergic stimulation.
    Ferguson RA; Boutilier RG
    J Exp Biol; 1989 May; 143():149-64. PubMed ID: 2732659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of catecholamines in regulating arterial oxygen content during acute hypercapnic acidosis in rainbow trout (Salmo gairdneri).
    Perry SF; Kinkead R
    Respir Physiol; 1989 Sep; 77(3):365-77. PubMed ID: 2781171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic alkalosis and the response of the trout, Salmo fario, to acute severe hypoxia.
    Thomas S; Perry SF; Pennec Y; Maxime V
    Respir Physiol; 1992 Jan; 87(1):91-104. PubMed ID: 1553451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo lactate kinetics at rest and during recovery from exhaustive exercise in coho salmon (Oncorhynchus kisutch) and starry flounder (Platichthys stellatus).
    Milligan CL; McDonald DG
    J Exp Biol; 1988 Mar; 135():119-31. PubMed ID: 3131476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid-base regulation following acute acidosis in seawater-adapted rainbow trout, Salmo gairdneri: a possible role for catecholamines.
    Tang Y; Nolan S; Boutilier RG
    J Exp Biol; 1988 Jan; 134():297-312. PubMed ID: 3128624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood oxygen transport of hypoxic Salmo gairdneri.
    Nikinmaa M; Soivio A
    J Exp Zool; 1982 Feb; 219(2):173-8. PubMed ID: 7061970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood oxygen equilibria and theoretical models. I. Effect of protons in trout (Salmo gairdneri) and human red cells, in absence of organic phosphates.
    Vorger P
    Comp Biochem Physiol A Comp Physiol; 1987; 88(4):603-12. PubMed ID: 2892635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.