BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 34301352)

  • 1. Potential value of small-molecule organic acids for the control of postharvest gray mold caused by Botrytis cinerea.
    Wang Y; Qiao Y; Zhang M; Ma Z; Xue Y; Mi Q; Wang A; Feng J
    Pestic Biochem Physiol; 2021 Aug; 177():104884. PubMed ID: 34301352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes.
    Yang J; Chen YZ; Yu-Xuan W; Tao L; Zhang YD; Wang SR; Zhang GC; Zhang J
    Pestic Biochem Physiol; 2021 Jun; 175():104859. PubMed ID: 33993955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocontrol potential of
    Ajijah N; Fiodor A; Dziurzynski M; Stasiuk R; Pawlowska J; Dziewit L; Pranaw K
    Front Plant Sci; 2023; 14():1288408. PubMed ID: 38143572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.
    Gao P; Qin J; Li D; Zhou S
    PLoS One; 2018; 13(1):e0190932. PubMed ID: 29320571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Volatile Organic Compounds Produced by
    Wang C; Duan T; Shi L; Zhang X; Fan W; Wang M; Wang J; Ren L; Zhao X; Wang Y
    Plant Dis; 2022 Sep; 106(9):2321-2329. PubMed ID: 35380464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifungal Activities of L-Methionine and L-Arginine Treatment In Vitro and In Vivo against
    Li S; Yu Y; Xie P; Zhu X; Yang C; Wang L; Zhang S
    Microorganisms; 2024 Feb; 12(2):. PubMed ID: 38399764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of methyl salicylate in combination with 1-methylcyclopropene on postharvest quality and decay caused by Botrytis cinerea in tomato fruit.
    Min D; Li F; Zhang X; Shu P; Cui X; Dong L; Ren C; Meng D; Li J
    J Sci Food Agric; 2018 Aug; 98(10):3815-3822. PubMed ID: 29352462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea.
    Bello F; Montironi ID; Medina MB; Munitz MS; Ferreira FV; Williman C; Vázquez D; Cariddi LN; Musumeci MA
    Food Microbiol; 2022 Sep; 106():104040. PubMed ID: 35690443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perillaldehyde Functions as a Potential Antifungal Agent by Triggering Metacaspase-Independent Apoptosis in Botrytis cinerea.
    Wang G; Wang Y; Wang K; Zhao H; Liu M; Liang W; Li D
    Microbiol Spectr; 2023 Jun; 11(3):e0052623. PubMed ID: 37191530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Plant Extracts to Control Postharvest Gray Mold and Susceptibility of Apple Fruits to
    Šernaitė L; Rasiukevičiūtė N; Valiuškaitė A
    Foods; 2020 Oct; 9(10):. PubMed ID: 33050259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of linalool on
    Wang QF; Wang XY; Li HS; Yang XY; Zhang RM; Gong B; Li XM; Shi QH
    Ying Yong Sheng Tai Xue Bao; 2023 Jan; 34(1):213-220. PubMed ID: 36799396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological Control of Tomato Gray Mold Caused by
    Sarven MS; Hao Q; Deng J; Yang F; Wang G; Xiao Y; Xiao X
    Pathogens; 2020 Mar; 9(3):. PubMed ID: 32183055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium pheophorbide a controls cherry tomato gray mold (Botrytis cinerea) by destroying fungal cell structure and enhancing disease resistance-related enzyme activities in fruit.
    Ji JY; Yang J; Zhang BW; Wang SR; Zhang GC; Lin LN
    Pestic Biochem Physiol; 2020 Jun; 166():104581. PubMed ID: 32448427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Use of
    Li TT; Zhang JD; Tang JQ; Liu ZC; Li YQ; Chen J; Zou LW
    Plant Dis; 2020 May; 104(5):1298-1304. PubMed ID: 32196417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of Natamycin Against Gray Mold of Stored Mandarin Fruit Caused by Isolates of
    Saito S; Wang F; Xiao CL
    Plant Dis; 2020 Mar; 104(3):787-792. PubMed ID: 31940447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifungal Activities and Mode of Action of
    Yan J; Wu H; Chen K; Feng J; Zhang Y
    Foods; 2021 Oct; 10(10):. PubMed ID: 34681505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epinecidin-1, a marine antifungal peptide, inhibits Botrytis cinerea and delays gray mold in postharvest peaches.
    Fan L; Wei Y; Chen Y; Jiang S; Xu F; Zhang C; Wang H; Shao X
    Food Chem; 2023 Mar; 403():134419. PubMed ID: 36191421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. l-Glutamate treatment enhances disease resistance of tomato fruit by inducing the expression of glutamate receptors and the accumulation of amino acids.
    Sun C; Jin L; Cai Y; Huang Y; Zheng X; Yu T
    Food Chem; 2019 Sep; 293():263-270. PubMed ID: 31151610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The antifungal potential of the chelating agent EDTA against postharvest plant pathogen Botrytis cinerea.
    Yang D; Shi H; Zhang K; Liu X; Ma L
    Int J Food Microbiol; 2023 Mar; 388():110089. PubMed ID: 36682298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L.
    Moura GGD; Barros AV; Machado F; Martins AD; Silva CMD; Durango LGC; Forim M; Alves E; Pasqual M; Doria J
    Microbiol Res; 2021 Oct; 251():126793. PubMed ID: 34325193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.