These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 34301623)

  • 1. A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data.
    Alghamdi N; Chang W; Dang P; Lu X; Wan C; Gampala S; Huang Z; Wang J; Ma Q; Zang Y; Fishel M; Cao S; Zhang C
    Genome Res; 2021 Oct; 31(10):1867-1884. PubMed ID: 34301623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining denoising of RNA-seq data and flux balance analysis for cluster analysis of single cells.
    Galuzzi BG; Vanoni M; Damiani C
    BMC Bioinformatics; 2022 Oct; 23(Suppl 6):445. PubMed ID: 36284276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FLUXestimator: a webserver for predicting metabolic flux and variations using transcriptomics data.
    Zhang Z; Zhu H; Dang P; Wang J; Chang W; Wang X; Alghamdi N; Lu A; Zang Y; Wu W; Wang Y; Zhang Y; Cao S; Zhang C
    Nucleic Acids Res; 2023 Jul; 51(W1):W180-W190. PubMed ID: 37216602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell RNA-seq data analysis based on directed graph neural network.
    Feng X; Zhang H; Lin H; Long H
    Methods; 2023 Mar; 211():48-60. PubMed ID: 36804214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell Heterogeneity Analysis in Single-Cell RNA-seq Data Using Mixture Exponential Graph and Markov Random Field Model.
    Wang Y; Tian X; Ai D
    Biomed Res Int; 2021; 2021():9919080. PubMed ID: 34095314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing cancer metabolism from bulk and single-cell RNA-seq data using METAFlux.
    Huang Y; Mohanty V; Dede M; Tsai K; Daher M; Li L; Rezvani K; Chen K
    Nat Commun; 2023 Aug; 14(1):4883. PubMed ID: 37573313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks.
    Mao G; Pang Z; Zuo K; Wang Q; Pei X; Chen X; Liu J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37985457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SFINN: inferring gene regulatory network from single-cell and spatial transcriptomic data with shared factor neighborhood and integrated neural network.
    Wang Y; Zhou F; Guan J
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38950180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.
    Srinivasan S; Leshchyk A; Johnson NT; Korkin D
    RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Cell Capture, RNA-seq, and Transcriptome Analysis from the Neural Retina.
    Dharmat R; Kim S; Li Y; Chen R
    Methods Mol Biol; 2020; 2092():159-186. PubMed ID: 31786788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-View Clustering With Graph Learning for scRNA-Seq Data.
    Wu W; Zhang W; Hou W; Ma X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3535-3546. PubMed ID: 37486829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data.
    Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X
    BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks.
    Li Y; Luo Y
    Genome Biol; 2024 Aug; 25(1):206. PubMed ID: 39103939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data.
    Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X
    Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses.
    Wang J; Ma A; Chang Y; Gong J; Jiang Y; Qi R; Wang C; Fu H; Ma Q; Xu D
    Nat Commun; 2021 Mar; 12(1):1882. PubMed ID: 33767197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping and Validation of scRNA-Seq-Derived Cell-Cell Communication Networks in the Tumor Microenvironment.
    Bridges K; Miller-Jensen K
    Front Immunol; 2022; 13():885267. PubMed ID: 35572582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data Analysis in Single-Cell Transcriptome Sequencing.
    Gao S
    Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.