These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes. Cobos FA; Panah MJN; Epps J; Long X; Man TK; Chiu HS; Chomsky E; Kiner E; Krueger MJ; di Bernardo D; Voloch L; Molenaar J; van Hooff SR; Westermann F; Jansky S; Redell ML; Mestdagh P; Sumazin P Genome Biol; 2023 Aug; 24(1):177. PubMed ID: 37528411 [TBL] [Abstract][Full Text] [Related]
5. Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data. Wang C; Lin Y; Li S; Guan J BMC Genomics; 2024 Sep; 25(1):875. PubMed ID: 39294558 [TBL] [Abstract][Full Text] [Related]
6. scDeconv: an R package to deconvolve bulk DNA methylation data with scRNA-seq data and paired bulk RNA-DNA methylation data. Liu Y Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35453146 [TBL] [Abstract][Full Text] [Related]
7. NNICE: a deep quantile neural network algorithm for expression deconvolution. Jin YW; Hu P; Liu Q Sci Rep; 2024 Jun; 14(1):14040. PubMed ID: 38890415 [TBL] [Abstract][Full Text] [Related]
8. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution. Liao J; Qian J; Fang Y; Chen Z; Zhuang X; Zhang N; Shao X; Hu Y; Yang P; Cheng J; Hu Y; Yu L; Yang H; Zhang J; Lu X; Shao L; Wu D; Gao Y; Chen H; Fan X Nat Commun; 2022 Oct; 13(1):6498. PubMed ID: 36310179 [TBL] [Abstract][Full Text] [Related]
9. SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data. Liu Y; Li N; Qi J; Xu G; Zhao J; Wang N; Huang X; Jiang W; Wei H; Justet A; Adams TS; Homer R; Amei A; Rosas IO; Kaminski N; Wang Z; Yan X Genome Biol; 2024 Oct; 25(1):271. PubMed ID: 39402626 [TBL] [Abstract][Full Text] [Related]
10. New generative methods for single-cell transcriptome data in bulk RNA sequence deconvolution. Nishikawa T; Lee M; Amau M Sci Rep; 2024 Feb; 14(1):4156. PubMed ID: 38378978 [TBL] [Abstract][Full Text] [Related]
11. Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve. Charytonowicz D; Brody R; Sebra R Nat Commun; 2023 Mar; 14(1):1350. PubMed ID: 36906603 [TBL] [Abstract][Full Text] [Related]
12. Improving bulk RNA-seq classification by transferring gene signature from single cells in acute myeloid leukemia. Wang R; Zheng X; Wang J; Wan S; Song F; Wong MH; Leung KS; Cheng L Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136933 [TBL] [Abstract][Full Text] [Related]
13. Deconvolution analysis of cell-type expression from bulk tissues by integrating with single-cell expression reference. Luo Y; Fan R Genet Epidemiol; 2022 Dec; 46(8):615-628. PubMed ID: 35788983 [TBL] [Abstract][Full Text] [Related]
14. SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references. Dong M; Thennavan A; Urrutia E; Li Y; Perou CM; Zou F; Jiang Y Brief Bioinform; 2021 Jan; 22(1):416-427. PubMed ID: 31925417 [TBL] [Abstract][Full Text] [Related]
15. Challenges and opportunities to computationally deconvolve heterogeneous tissue with varying cell sizes using single-cell RNA-sequencing datasets. Maden SK; Kwon SH; Huuki-Myers LA; Collado-Torres L; Hicks SC; Maynard KR Genome Biol; 2023 Dec; 24(1):288. PubMed ID: 38098055 [TBL] [Abstract][Full Text] [Related]
16. BEDwARS: a robust Bayesian approach to bulk gene expression deconvolution with noisy reference signatures. Ghaffari S; Bouchonville KJ; Saleh E; Schmidt RE; Offer SM; Sinha S Genome Biol; 2023 Aug; 24(1):178. PubMed ID: 37537644 [TBL] [Abstract][Full Text] [Related]
17. SCADIE: simultaneous estimation of cell type proportions and cell type-specific gene expressions using SCAD-based iterative estimating procedure. Tang D; Park S; Zhao H Genome Biol; 2022 Jun; 23(1):129. PubMed ID: 35706040 [TBL] [Abstract][Full Text] [Related]
18. CDSeqR: fast complete deconvolution for gene expression data from bulk tissues. Kang K; Huang C; Li Y; Umbach DM; Li L BMC Bioinformatics; 2021 May; 22(1):262. PubMed ID: 34030626 [TBL] [Abstract][Full Text] [Related]
19. EPIC: A Tool to Estimate the Proportions of Different Cell Types from Bulk Gene Expression Data. Racle J; Gfeller D Methods Mol Biol; 2020; 2120():233-248. PubMed ID: 32124324 [TBL] [Abstract][Full Text] [Related]
20. Fine-grained cell-type specific association studies with human bulk brain data using a large single-nucleus RNA sequencing based reference panel. van den Oord EJCG; Aberg KA Sci Rep; 2023 Aug; 13(1):13004. PubMed ID: 37563216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]