BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34301626)

  • 1. Three-dimensional missense tolerance ratio analysis.
    Perszyk RE; Kristensen AS; Lyuboslavsky P; Traynelis SF
    Genome Res; 2021 Aug; 31(8):1447-1461. PubMed ID: 34301626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compendium of proteins containing segments that exhibit zero-tolerance to amino acid variation in humans.
    Sanders AL; Hermanson JN; Samuels DC; Plate L; Sanders CR
    Protein Sci; 2022 Sep; 31(9):e4408. PubMed ID: 36040257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRIMEtoYHU: a new web tool to develop yeast-based functional assays for characterizing cancer-associated missense variants.
    Mercatanti A; Lodovichi S; Cervelli T; Galli A
    FEMS Yeast Res; 2017 Dec; 17(8):. PubMed ID: 29069390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathogenic missense protein variants affect different functional pathways and proteomic features than healthy population variants.
    Laddach A; Ng JCF; Fraternali F
    PLoS Biol; 2021 Apr; 19(4):e3001207. PubMed ID: 33909605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic intolerance analysis as a tool for protein science.
    Li GC; Forster-Benson ETC; Sanders CR
    Biochim Biophys Acta Biomembr; 2020 Jan; 1862(1):183058. PubMed ID: 31494120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing genomic medicine in epilepsy through a gene-customized approach to missense variant interpretation.
    Traynelis J; Silk M; Wang Q; Berkovic SF; Liu L; Ascher DB; Balding DJ; Petrovski S
    Genome Res; 2017 Oct; 27(10):1715-1729. PubMed ID: 28864458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive characterization of amino acid positions in protein structures reveals molecular effect of missense variants.
    Iqbal S; Pérez-Palma E; Jespersen JB; May P; Hoksza D; Heyne HO; Ahmed SS; Rifat ZT; Rahman MS; Lage K; Palotie A; Cottrell JR; Wagner FF; Daly MJ; Campbell AJ; Lal D
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28201-28211. PubMed ID: 33106425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide identification, characterization and classification of ionotropic glutamate receptor genes (iGluRs) in the malaria vector Anopheles sinensis (Diptera: Culicidae).
    Wang TT; Si FL; He ZB; Chen B
    Parasit Vectors; 2018 Jan; 11(1):34. PubMed ID: 29334982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MTR-Viewer: identifying regions within genes under purifying selection.
    Silk M; Petrovski S; Ascher DB
    Nucleic Acids Res; 2019 Jul; 47(W1):W121-W126. PubMed ID: 31170280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the impacts of missense mutations on structures and functions of human cancer-related genes: A preliminary computational analysis of the COSMIC Cancer Gene Census.
    Malhotra S; Alsulami AF; Heiyun Y; Ochoa BM; Jubb H; Forbes S; Blundell TL
    PLoS One; 2019; 14(7):e0219935. PubMed ID: 31323058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting functional consequences of mutations using molecular interaction network features.
    Ozturk K; Carter H
    Hum Genet; 2022 Jun; 141(6):1195-1210. PubMed ID: 34432150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KVarPredDB: a database for predicting pathogenicity of missense sequence variants of keratin genes associated with genodermatoses.
    Ying Y; Lu L; Banerjee S; Xu L; Zhao Q; Wu H; Li R; Xu X; Yu H; Neculai D; Xi Y; Yang F; Qin J; Li C
    Hum Genomics; 2020 Dec; 14(1):45. PubMed ID: 33287903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PremPS: Predicting the impact of missense mutations on protein stability.
    Chen Y; Lu H; Zhang N; Zhu Z; Wang S; Li M
    PLoS Comput Biol; 2020 Dec; 16(12):e1008543. PubMed ID: 33378330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.
    Engin HB; Kreisberg JF; Carter H
    PLoS One; 2016; 11(4):e0152929. PubMed ID: 27043210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and Interpretation of the Impact of Missense Variants in Cancer.
    Petrosino M; Novak L; Pasquo A; Chiaraluce R; Turina P; Capriotti E; Consalvi V
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34063805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. News from the protein mutability landscape.
    Hecht M; Bromberg Y; Rost B
    J Mol Biol; 2013 Nov; 425(21):3937-48. PubMed ID: 23896297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GeVIR is a continuous gene-level metric that uses variant distribution patterns to prioritize disease candidate genes.
    Abramovs N; Brass A; Tassabehji M
    Nat Genet; 2020 Jan; 52(1):35-39. PubMed ID: 31873297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UMD-predictor, a new prediction tool for nucleotide substitution pathogenicity -- application to four genes: FBN1, FBN2, TGFBR1, and TGFBR2.
    Frédéric MY; Lalande M; Boileau C; Hamroun D; Claustres M; Béroud C; Collod-Béroud G
    Hum Mutat; 2009 Jun; 30(6):952-9. PubMed ID: 19370756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MTR3D: identifying regions within protein tertiary structures under purifying selection.
    Silk M; Pires DEV; Rodrigues CHM; D'Souza EN; Olshansky M; Thorne N; Ascher DB
    Nucleic Acids Res; 2021 Jul; 49(W1):W438-W445. PubMed ID: 34050760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.