These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
716 related articles for article (PubMed ID: 34301649)
1. Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learning-based, retrospective analysis of the MIMIC-III database. Li F; Xin H; Zhang J; Fu M; Zhou J; Lian Z BMJ Open; 2021 Jul; 11(7):e044779. PubMed ID: 34301649 [TBL] [Abstract][Full Text] [Related]
2. Prediction model of in-hospital mortality in intensive care unit patients with cardiac arrest: a retrospective analysis of MIMIC -IV database based on machine learning. Sun Y; He Z; Ren J; Wu Y BMC Anesthesiol; 2023 May; 23(1):178. PubMed ID: 37231340 [TBL] [Abstract][Full Text] [Related]
3. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study. Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767 [TBL] [Abstract][Full Text] [Related]
4. Machine learning prediction models and nomogram to predict the risk of in-hospital death for severe DKA: A clinical study based on MIMIC-IV, eICU databases, and a college hospital ICU. Xie W; Li Y; Meng X; Zhao M Int J Med Inform; 2023 Jun; 174():105049. PubMed ID: 37001474 [TBL] [Abstract][Full Text] [Related]
5. Machine learning-based in-hospital mortality risk prediction tool for intensive care unit patients with heart failure. Chen Z; Li T; Guo S; Zeng D; Wang K Front Cardiovasc Med; 2023; 10():1119699. PubMed ID: 37077747 [TBL] [Abstract][Full Text] [Related]
6. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. Kong G; Lin K; Hu Y BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381 [TBL] [Abstract][Full Text] [Related]
7. Development of a novel tool: a nomogram for predicting in-hospital mortality of patients in intensive care unit after percutaneous coronary intervention. Yuan M; Ren BC; Wang Y; Ren F; Gao D BMC Anesthesiol; 2023 Jan; 23(1):5. PubMed ID: 36609220 [TBL] [Abstract][Full Text] [Related]
8. [Establishment and evaluation of early in-hospital death prediction model for patients with acute pancreatitis in intensive care unit]. Yu L; Zhou X; Li Y; Liu M Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Aug; 35(8):865-869. PubMed ID: 37593868 [TBL] [Abstract][Full Text] [Related]
9. A machine learning-based risk stratification tool for in-hospital mortality of intensive care unit patients with heart failure. Luo C; Zhu Y; Zhu Z; Li R; Chen G; Wang Z J Transl Med; 2022 Mar; 20(1):136. PubMed ID: 35303896 [TBL] [Abstract][Full Text] [Related]
10. A Novel Composite Indicator of Predicting Mortality Risk for Heart Failure Patients With Diabetes Admitted to Intensive Care Unit Based on Machine Learning. Yang B; Zhu Y; Lu X; Shen C Front Endocrinol (Lausanne); 2022; 13():917838. PubMed ID: 35846312 [TBL] [Abstract][Full Text] [Related]
11. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases. Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291 [TBL] [Abstract][Full Text] [Related]
12. A New Risk Model based on the Machine Learning Approach for Prediction of Mortality in the Respiratory Intensive Care Unit. Yan P; Huang S; Li Y; Chen T; Li X; Zhang Y; Wu H; Xu J; Xie G; Xie L; Mo G Curr Pharm Biotechnol; 2023; 24(13):1673-1681. PubMed ID: 36825694 [TBL] [Abstract][Full Text] [Related]
13. Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit. Huang T; Le D; Yuan L; Xu S; Peng X PLoS One; 2023; 18(1):e0280606. PubMed ID: 36701342 [TBL] [Abstract][Full Text] [Related]
14. A machine learning-based prediction model for in-hospital mortality among critically ill patients with hip fracture: An internal and external validated study. Lei M; Han Z; Wang S; Han T; Fang S; Lin F; Huang T Injury; 2023 Feb; 54(2):636-644. PubMed ID: 36414503 [TBL] [Abstract][Full Text] [Related]
15. Dendrogram of transparent feature importance machine learning statistics to classify associations for heart failure: A reanalysis of a retrospective cohort study of the Medical Information Mart for Intensive Care III (MIMIC-III) database. Huang AA; Huang SY PLoS One; 2023; 18(7):e0288819. PubMed ID: 37471315 [TBL] [Abstract][Full Text] [Related]
16. Machine Learning-Based Models Incorporating Social Determinants of Health vs Traditional Models for Predicting In-Hospital Mortality in Patients With Heart Failure. Segar MW; Hall JL; Jhund PS; Powell-Wiley TM; Morris AA; Kao D; Fonarow GC; Hernandez R; Ibrahim NE; Rutan C; Navar AM; Stevens LM; Pandey A JAMA Cardiol; 2022 Aug; 7(8):844-854. PubMed ID: 35793094 [TBL] [Abstract][Full Text] [Related]
17. Nomogram to predict the risk of acute kidney injury in patients with diabetic ketoacidosis: an analysis of the MIMIC-III database. Fan T; Wang H; Wang J; Wang W; Guan H; Zhang C BMC Endocr Disord; 2021 Mar; 21(1):37. PubMed ID: 33663489 [TBL] [Abstract][Full Text] [Related]
18. A time-incorporated SOFA score-based machine learning model for predicting mortality in critically ill patients: A multicenter, real-world study. Liu Y; Gao K; Deng H; Ling T; Lin J; Yu X; Bo X; Zhou J; Gao L; Wang P; Hu J; Zhang J; Tong Z; Liu Y; Shi Y; Ke L; Gao Y; Li W Int J Med Inform; 2022 Jul; 163():104776. PubMed ID: 35512625 [TBL] [Abstract][Full Text] [Related]
19. Machine learning-based risk prediction of malignant arrhythmia in hospitalized patients with heart failure. Wang Q; Li B; Chen K; Yu F; Su H; Hu K; Liu Z; Wu G; Yan J; Su G ESC Heart Fail; 2021 Dec; 8(6):5363-5371. PubMed ID: 34585531 [TBL] [Abstract][Full Text] [Related]
20. A Retrospective Cohort Study: Predicting 90-Day Mortality for ICU Trauma Patients with a Machine Learning Algorithm Using XGBoost Using MIMIC-III Database. Yang S; Cao L; Zhou Y; Hu C J Multidiscip Healthc; 2023; 16():2625-2640. PubMed ID: 37701177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]