BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 34301928)

  • 1. Strainberry: automated strain separation in low-complexity metagenomes using long reads.
    Vicedomini R; Quince C; Darling AE; Chikhi R
    Nat Commun; 2021 Jul; 12(1):4485. PubMed ID: 34301928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.
    Brown BL; Watson M; Minot SS; Rivera MC; Franklin RB
    Gigascience; 2017 Mar; 6(3):1-10. PubMed ID: 28327976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating
    Vosloo S; Huo L; Anderson CL; Dai Z; Sevillano M; Pinto A
    Microbiol Spectr; 2021 Dec; 9(3):e0143421. PubMed ID: 34730411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system.
    Somerville V; Lutz S; Schmid M; Frei D; Moser A; Irmler S; Frey JE; Ahrens CH
    BMC Microbiol; 2019 Jun; 19(1):143. PubMed ID: 31238873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species classifier choice is a key consideration when analysing low-complexity food microbiome data.
    Walsh AM; Crispie F; O'Sullivan O; Finnegan L; Claesson MJ; Cotter PD
    Microbiome; 2018 Mar; 6(1):50. PubMed ID: 29554948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. metaFlye: scalable long-read metagenome assembly using repeat graphs.
    Kolmogorov M; Bickhart DM; Behsaz B; Gurevich A; Rayko M; Shin SB; Kuhn K; Yuan J; Polevikov E; Smith TPL; Pevzner PA
    Nat Methods; 2020 Nov; 17(11):1103-1110. PubMed ID: 33020656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autometa: automated extraction of microbial genomes from individual shotgun metagenomes.
    Miller IJ; Rees ER; Ross J; Miller I; Baxa J; Lopera J; Kerby RL; Rey FE; Kwan JC
    Nucleic Acids Res; 2019 Jun; 47(10):e57. PubMed ID: 30838416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive investigation of metagenome assembly by linked-read sequencing.
    Zhang L; Fang X; Liao H; Zhang Z; Zhou X; Han L; Chen Y; Qiu Q; Li SC
    Microbiome; 2020 Nov; 8(1):156. PubMed ID: 33176883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes.
    Bertrand D; Shaw J; Kalathiyappan M; Ng AHQ; Kumar MS; Li C; Dvornicic M; Soldo JP; Koh JY; Tong C; Ng OT; Barkham T; Young B; Marimuthu K; Chng KR; Sikic M; Nagarajan N
    Nat Biotechnol; 2019 Aug; 37(8):937-944. PubMed ID: 31359005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing metagenome-assembled genome-based pathogen identification: unraveling the power of long-read assembly algorithms in Oxford Nanopore sequencing.
    Chen Z; Grim CJ; Ramachandran P; Meng J
    Microbiol Spectr; 2024 Jun; 12(6):e0011724. PubMed ID: 38687063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring high-quality microbial genomes by assembling short-reads with long-range connectivity.
    Zhang Z; Xiao J; Wang H; Yang C; Huang Y; Yue Z; Chen Y; Han L; Yin K; Lyu A; Fang X; Zhang L
    Nat Commun; 2024 May; 15(1):4631. PubMed ID: 38821971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly methods for nanopore-based metagenomic sequencing: a comparative study.
    Latorre-Pérez A; Villalba-Bermell P; Pascual J; Vilanova C
    Sci Rep; 2020 Aug; 10(1):13588. PubMed ID: 32788623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intestinal microbiota domination under extreme selective pressures characterized by metagenomic read cloud sequencing and assembly.
    Kang JB; Siranosian BA; Moss EL; Banaei N; Andermann TM; Bhatt AS
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):585. PubMed ID: 31787070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dancing the Nanopore limbo - Nanopore metagenomics from small DNA quantities for bacterial genome reconstruction.
    Simon SA; Schmidt K; Griesdorn L; Soares AR; Bornemann TLV; Probst AJ
    BMC Genomics; 2023 Dec; 24(1):727. PubMed ID: 38041056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes.
    Olson ND; Treangen TJ; Hill CM; Cepeda-Espinoza V; Ghurye J; Koren S; Pop M
    Brief Bioinform; 2019 Jul; 20(4):1140-1150. PubMed ID: 28968737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling microbial diversity: harnessing long-read sequencing technology.
    Agustinho DP; Fu Y; Menon VK; Metcalf GA; Treangen TJ; Sedlazeck FJ
    Nat Methods; 2024 Jun; 21(6):954-966. PubMed ID: 38689099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-Read Sequencing Improves Recovery of Picoeukaryotic Genomes and Zooplankton Marker Genes from Marine Metagenomes.
    Patin NV; Goodwin KD
    mSystems; 2022 Dec; 7(6):e0059522. PubMed ID: 36448813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling microbial strains in urban environments using metagenomic sequencing data.
    Zolfo M; Asnicar F; Manghi P; Pasolli E; Tett A; Segata N
    Biol Direct; 2018 May; 13(1):9. PubMed ID: 29743119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charting the complexity of the activated sludge microbiome through a hybrid sequencing strategy.
    Liu L; Wang Y; Yang Y; Wang D; Cheng SH; Zheng C; Zhang T
    Microbiome; 2021 Oct; 9(1):205. PubMed ID: 34649602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of metagenomic assemblers based on hybrid reads of real and simulated metagenomic sequences.
    Wang Z; Wang Y; Fuhrman JA; Sun F; Zhu S
    Brief Bioinform; 2020 May; 21(3):777-790. PubMed ID: 30860572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.