These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 34301984)
1. QCBCT-NET for direct measurement of bone mineral density from quantitative cone-beam CT: a human skull phantom study. Yong TH; Yang S; Lee SJ; Park C; Kim JE; Huh KH; Lee SS; Heo MS; Yi WJ Sci Rep; 2021 Jul; 11(1):15083. PubMed ID: 34301984 [TBL] [Abstract][Full Text] [Related]
2. Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy. Gao L; Xie K; Wu X; Lu Z; Li C; Sun J; Lin T; Sui J; Ni X Radiat Oncol; 2021 Oct; 16(1):202. PubMed ID: 34649572 [TBL] [Abstract][Full Text] [Related]
3. Validation of bone mineral density measurement using quantitative CBCT image based on deep learning. Park CS; Kang SR; Kim JE; Huh KH; Lee SS; Heo MS; Han JJ; Yi WJ Sci Rep; 2023 Jul; 13(1):11921. PubMed ID: 37488135 [TBL] [Abstract][Full Text] [Related]
4. Head and neck synthetic CT generated from ultra-low-dose cone-beam CT following Image Gently Protocol using deep neural network. Yuan N; Rao S; Chen Q; Sensoy L; Qi J; Rong Y Med Phys; 2022 May; 49(5):3263-3277. PubMed ID: 35229904 [TBL] [Abstract][Full Text] [Related]
5. Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography. Harms J; Lei Y; Wang T; Zhang R; Zhou J; Tang X; Curran WJ; Liu T; Yang X Med Phys; 2019 Sep; 46(9):3998-4009. PubMed ID: 31206709 [TBL] [Abstract][Full Text] [Related]
6. Generating synthesized computed tomography from CBCT using a conditional generative adversarial network for head and neck cancer patients. Zhang Y; Ding SG; Gong XC; Yuan XX; Lin JF; Chen Q; Li JG Technol Cancer Res Treat; 2022; 21():15330338221085358. PubMed ID: 35262422 [No Abstract] [Full Text] [Related]
7. A quantitative CBCT pipeline based on 2D antiscatter grid and grid-based scatter sampling for image-guided radiation therapy. Bayat F; Ruan D; Miften M; Altunbas C Med Phys; 2023 Dec; 50(12):7980-7995. PubMed ID: 37665760 [TBL] [Abstract][Full Text] [Related]
8. Improving CBCT quality to CT level using deep learning with generative adversarial network. Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647 [TBL] [Abstract][Full Text] [Related]
9. Convolutional neural network enhancement of fast-scan low-dose cone-beam CT images for head and neck radiotherapy. Yuan N; Dyer B; Rao S; Chen Q; Benedict S; Shang L; Kang Y; Qi J; Rong Y Phys Med Biol; 2020 Jan; 65(3):035003. PubMed ID: 31842014 [TBL] [Abstract][Full Text] [Related]
10. Cone-beam CT image quality improvement using Cycle-Deblur consistent adversarial networks (Cycle-Deblur GAN) for chest CT imaging in breast cancer patients. Tien HJ; Yang HC; Shueng PW; Chen JC Sci Rep; 2021 Jan; 11(1):1133. PubMed ID: 33441936 [TBL] [Abstract][Full Text] [Related]
11. Improving cone-beam CT quality using a cycle-residual connection with a dilated convolution-consistent generative adversarial network. Deng L; Zhang M; Wang J; Huang S; Yang X Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35728794 [No Abstract] [Full Text] [Related]
12. Synthetic CT generation from CBCT based on structural constraint cycle-EEM-GAN. Lu Q; Luo F; Shi J; Xu K Biomed Phys Eng Express; 2024 Sep; 10(6):. PubMed ID: 39264056 [No Abstract] [Full Text] [Related]
13. Pseudo-CT generation from multi-parametric MRI using a novel multi-channel multi-path conditional generative adversarial network for nasopharyngeal carcinoma patients. Tie X; Lam SK; Zhang Y; Lee KH; Au KH; Cai J Med Phys; 2020 Apr; 47(4):1750-1762. PubMed ID: 32012292 [TBL] [Abstract][Full Text] [Related]
14. A two-step method to improve image quality of CBCT with phantom-based supervised and patient-based unsupervised learning strategies. Liu Y; Chen X; Zhu J; Yang B; Wei R; Xiong R; Quan H; Liu Y; Dai J; Men K Phys Med Biol; 2022 Apr; 67(8):. PubMed ID: 35354124 [No Abstract] [Full Text] [Related]
15. Combining physics-based models with deep learning image synthesis and uncertainty in intraoperative cone-beam CT of the brain. Zhang X; Sisniega A; Zbijewski WB; Lee J; Jones CK; Wu P; Han R; Uneri A; Vagdargi P; Helm PA; Luciano M; Anderson WS; Siewerdsen JH Med Phys; 2023 May; 50(5):2607-2624. PubMed ID: 36906915 [TBL] [Abstract][Full Text] [Related]
16. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network. Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390 [TBL] [Abstract][Full Text] [Related]
17. CBCT-Based synthetic CT image generation using conditional denoising diffusion probabilistic model. Peng J; Qiu RLJ; Wynne JF; Chang CW; Pan S; Wang T; Roper J; Liu T; Patel PR; Yu DS; Yang X Med Phys; 2024 Mar; 51(3):1847-1859. PubMed ID: 37646491 [TBL] [Abstract][Full Text] [Related]
18. Deep learning in computed tomography super resolution using multi-modality data training. Fok WYR; Fieselmann A; Herbst M; Ritschl L; Kappler S; Saalfeld S Med Phys; 2024 Apr; 51(4):2846-2860. PubMed ID: 37972365 [TBL] [Abstract][Full Text] [Related]
19. [Mitigating metal artifacts from cobalt-chromium alloy crowns in cone-beam CT images through deep learning techniques]. Jia LH; Lin HL; Zheng SW; Lin XJ; Zhang D; Yu H Zhonghua Kou Qiang Yi Xue Za Zhi; 2024 Jan; 59(1):71-79. PubMed ID: 38228542 [No Abstract] [Full Text] [Related]
20. Texture transformer super-resolution for low-dose computed tomography. Zhou S; Yu L; Jin M Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36301699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]