These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34301987)

  • 1. Gene expression analysis method integration and co-expression module detection applied to rare glucide metabolism disorders using ExpHunterSuite.
    Jabato FM; Córdoba-Caballero J; Rojano E; Romá-Mateo C; Sanz P; Pérez B; Gallego D; Seoane P; Ranea JAG; Perkins JR
    Sci Rep; 2021 Jul; 11(1):15062. PubMed ID: 34301987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNASeqR: An R Package for Automated Two-Group RNA-Seq Analysis Workflow.
    Chao KH; Hsiao YW; Lee YF; Lee CY; Lai LC; Tsai MH; Lu TP; Chuang EY
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):2023-2031. PubMed ID: 31796413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the strength of expression conservation from high throughput RNA-seq data.
    Gu X; Ruan H; Yang J
    Bioinformatics; 2019 Dec; 35(23):5030-5038. PubMed ID: 31114853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mAPKL: R/ Bioconductor package for detecting gene exemplars and revealing their characteristics.
    Sakellariou A; Spyrou G
    BMC Bioinformatics; 2015 Sep; 16(1):291. PubMed ID: 26374744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covariate-dependent negative binomial factor analysis of RNA sequencing data.
    Zamani Dadaneh S; Zhou M; Qian X
    Bioinformatics; 2018 Jul; 34(13):i61-i69. PubMed ID: 29949981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ideal: an R/Bioconductor package for interactive differential expression analysis.
    Marini F; Linke J; Binder H
    BMC Bioinformatics; 2020 Dec; 21(1):565. PubMed ID: 33297942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and accurate approximate inference of transcript expression from RNA-seq data.
    Hensman J; Papastamoulis P; Glaus P; Honkela A; Rattray M
    Bioinformatics; 2015 Dec; 31(24):3881-9. PubMed ID: 26315907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PanClassif: Improving pan cancer classification of single cell RNA-seq gene expression data using machine learning.
    Mahin KF; Robiuddin M; Islam M; Ashraf S; Yeasmin F; Shatabda S
    Genomics; 2022 Mar; 114(2):110264. PubMed ID: 34998929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. clusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-cell and other large gene expression datasets.
    Risso D; Purvis L; Fletcher RB; Das D; Ngai J; Dudoit S; Purdom E
    PLoS Comput Biol; 2018 Sep; 14(9):e1006378. PubMed ID: 30180157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ImpulseDE: detection of differentially expressed genes in time series data using impulse models.
    Sander J; Schultze JL; Yosef N
    Bioinformatics; 2017 Mar; 33(5):757-759. PubMed ID: 27797772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments.
    Leng N; Li Y; McIntosh BE; Nguyen BK; Duffin B; Tian S; Thomson JA; Dewey CN; Stewart R; Kendziorski C
    Bioinformatics; 2015 Aug; 31(16):2614-22. PubMed ID: 25847007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QUBIC: a bioconductor package for qualitative biclustering analysis of gene co-expression data.
    Zhang Y; Xie J; Yang J; Fennell A; Zhang C; Ma Q
    Bioinformatics; 2017 Feb; 33(3):450-452. PubMed ID: 28172469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. runibic: a Bioconductor package for parallel row-based biclustering of gene expression data.
    Orzechowski P; Panszczyk A; Huang X; Moore JH
    Bioinformatics; 2018 Dec; 34(24):4302-4304. PubMed ID: 29939213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq.
    Cole MB; Risso D; Wagner A; DeTomaso D; Ngai J; Purdom E; Dudoit S; Yosef N
    Cell Syst; 2019 Apr; 8(4):315-328.e8. PubMed ID: 31022373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inference of Gene Coexpression Networks from Bulk-Based RNA-Sequencing Data.
    Lamere AT
    Methods Mol Biol; 2021; 2328():13-23. PubMed ID: 34251617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyester: simulating RNA-seq datasets with differential transcript expression.
    Frazee AC; Jaffe AE; Langmead B; Leek JT
    Bioinformatics; 2015 Sep; 31(17):2778-84. PubMed ID: 25926345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized empirical Bayesian methods for discovery of differential data in high-throughput biology.
    Hardcastle TJ
    Bioinformatics; 2016 Jan; 32(2):195-202. PubMed ID: 26428289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DIscBIO: A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics.
    Ghannoum S; Leoncio Netto W; Fantini D; Ragan-Kelley B; Parizadeh A; Jonasson E; Ståhlberg A; Farhan H; Köhn-Luque A
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33573289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network module-based model in the differential expression analysis for RNA-seq.
    Lei M; Xu J; Huang LC; Wang L; Li J
    Bioinformatics; 2017 Sep; 33(17):2699-2705. PubMed ID: 28407034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.