These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 34302011)

  • 21. Spontaneous Transport Mechanics of Water Droplets under a Synergistic Action of Designed Pattern and Non-Wetting Gradient.
    Liu W; Lu Y; Shen Y; Chen H; Ni Y; Xu Y
    ACS Omega; 2023 May; 8(18):16450-16458. PubMed ID: 37179628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Directional Sliding Behavior of a Water Droplet on a Wedge-Shape Patterned Functional Surface.
    Liu M; Yao Y; Li J; Peng Z; Chen S
    J Phys Chem B; 2020 Aug; 124(31):6905-6912. PubMed ID: 32658478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stretchable Hydrophobic Surfaces and Self-Cleaning Applications.
    Yilbas BS; Hassan G; Al-Qahtani H; Al-Aqeeli N; Al-Sharafi A; Al-Merbati AS; Baroud TN; Adukwu JAE
    Sci Rep; 2019 Oct; 9(1):14697. PubMed ID: 31604981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Droplet Rolling Transport on Hydrophobic Surfaces Under Rotating Electric Fields: A Molecular Dynamics Study.
    Liu W; Jing D
    Langmuir; 2023 Oct; 39(41):14660-14669. PubMed ID: 37802133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Droplet Mobility on Slippery Lubricant Impregnated and Superhydrophobic Surfaces under the Effect of Air Shear Flow.
    Yeganehdoust F; Amer A; Sharifi N; Karimfazli I; Dolatabadi A
    Langmuir; 2021 May; 37(20):6278-6291. PubMed ID: 33978432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution Crystallization of Polycarbonate Surfaces for Hydrophobic State: Water Droplet Dynamics and Life Cycle Assessment towards Self-Cleaning Applications.
    Yilbas BS; Abubakar AA; Al-Qahtani H; Shuja SZ; Shaukat MM; Sahin AZ; Al-Sharafi A; Bahatab S
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33946140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Field induced anomalous spreading, oscillation, ejection, spinning, and breaking of oil droplets on a strongly slipping water surface.
    Kumar S; Sarma B; Dasmahapatra AK; Dalal A; Basu DN; Bandyopadhyay D
    Faraday Discuss; 2017 Jul; 199():115-128. PubMed ID: 28422194
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic Behavior of Droplet Impact on Inclined Surfaces with Acoustic Waves.
    H Biroun M; Rahmati M; Tao R; Torun H; Jangi M; Fu Y
    Langmuir; 2020 Sep; 36(34):10175-10186. PubMed ID: 32787026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environmental dust removal from inclined hydrophobic glass surface: avalanche influence on dynamics of dust particles.
    Yilbas BS; Al-Sharafi A; Ali H; Al-Aqeeli N; Al-Qahtani H; Al-Sulaiman F; Abu-Dheir N; Abdelmagid G; Elkhazraji A
    RSC Adv; 2018 Sep; 8(59):33775-33785. PubMed ID: 35548819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct observation of internal fluidity in a water droplet during sliding on hydrophobic surfaces.
    Sakai M; Song JH; Yoshida N; Suzuki S; Kameshima Y; Nakajima A
    Langmuir; 2006 May; 22(11):4906-9. PubMed ID: 16700571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sliding Water Droplet on Oil Impregnated Surface and Dust Particle Mitigation.
    Bahatab S; Yilbas BS; Abubakar AA; Hassan G; Mohammed AS; Al-Qahtani H; Sahin AZ; Al-Sharafi A
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33546331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Droplet impacting on pillared hydrophobic surfaces with different solid fractions.
    Xia L; Yang Z; Chen F; Liu T; Tian Y; Zhang D
    J Colloid Interface Sci; 2024 Mar; 658():61-73. PubMed ID: 38100977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Droplet detachment by air flow for microstructured superhydrophobic surfaces.
    Hao P; Lv C; Yao Z
    Langmuir; 2013 Apr; 29(17):5160-6. PubMed ID: 23557076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Steering droplets on substrates using moving steps in wettability.
    Grawitter J; Stark H
    Soft Matter; 2021 Mar; 17(9):2454-2467. PubMed ID: 33492322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with Annular Wedge-Shaped Micropillar Arrays.
    Hou H; Wu X; Hu Z; Gao S; Yuan Z
    Langmuir; 2023 Dec; 39(51):18825-18833. PubMed ID: 38096374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Droplet Impact on Asymmetric Hydrophobic Microstructures.
    Yada S; Lacis U; van der Wijngaart W; Lundell F; Amberg G; Bagheri S
    Langmuir; 2022 Jul; 38(26):7956-7964. PubMed ID: 35737474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mobility of A Water Droplet on Liquid Phase of N-Octadecane Coated Hydrophobic Surface.
    Yilbas BS; Ali H; Al-Sharafi A; Al-Aqeeli N; Abu-Dheir N; Demir K
    Sci Rep; 2018 Oct; 8(1):15060. PubMed ID: 30305659
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Droplet Self-Propulsion on Slippery Liquid-Infused Surfaces with Dual-Lubricant Wedge-Shaped Wettability Patterns.
    Pelizzari M; McHale G; Armstrong S; Zhao H; Ledesma-Aguilar R; Wells GG; Kusumaatmaja H
    Langmuir; 2023 Nov; 39(44):15676-15689. PubMed ID: 37874819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.