BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34302060)

  • 1. Induction of cryptic pre-mRNA splice-switching by antisense oligonucleotides.
    Ham KA; Keegan NP; McIntosh CS; Aung-Htut MT; Zaw K; Greer K; Fletcher S; Wilton SD
    Sci Rep; 2021 Jul; 11(1):15137. PubMed ID: 34302060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybridization-mediated off-target effects of splice-switching antisense oligonucleotides.
    Scharner J; Ma WK; Zhang Q; Lin KT; Rigo F; Bennett CF; Krainer AR
    Nucleic Acids Res; 2020 Jan; 48(2):802-816. PubMed ID: 31802121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Invention and Early History of Exon Skipping and Splice Modulation.
    Lim KRQ; Yokota T
    Methods Mol Biol; 2018; 1828():3-30. PubMed ID: 30171532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear antisense effects in cyclophilin A pre-mRNA splicing by oligonucleotides: a comparison of tricyclo-DNA with LNA.
    Ittig D; Liu S; Renneberg D; Schümperli D; Leumann CJ
    Nucleic Acids Res; 2004; 32(1):346-53. PubMed ID: 14726483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization by antisense oligonucleotides of exon and intron sequences required for splicing.
    Dominski Z; Kole R
    Mol Cell Biol; 1994 Nov; 14(11):7445-54. PubMed ID: 7935459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antisense oligonucleotide induced exon skipping and the dystrophin gene transcript: cocktails and chemistries.
    Adams AM; Harding PL; Iversen PL; Coleman C; Fletcher S; Wilton SD
    BMC Mol Biol; 2007 Jul; 8():57. PubMed ID: 17601349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of splice sites to antisense oligonucleotides in vivo.
    Sierakowska H; Sambade MJ; Schümperli D; Kole R
    RNA; 1999 Mar; 5(3):369-77. PubMed ID: 10094306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio prediction of mutation-induced cryptic splice-site activation and exon skipping.
    Divina P; Kvitkovicova A; Buratti E; Vorechovsky I
    Eur J Hum Genet; 2009 Jun; 17(6):759-65. PubMed ID: 19142208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing RNA/ENA chimeric antisense oligonucleotides using in vitro splicing.
    Takeshima Y; Yagi M; Matsuo M
    Methods Mol Biol; 2012; 867():131-41. PubMed ID: 22454059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target selection for antisense oligonucleotide induced exon skipping in the dystrophin gene.
    Errington SJ; Mann CJ; Fletcher S; Wilton SD
    J Gene Med; 2003 Jun; 5(6):518-27. PubMed ID: 12797117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisense targeting of decoy exons can reduce intron retention and increase protein expression in human erythroblasts.
    Parra M; Zhang W; Vu J; DeWitt M; Conboy JG
    RNA; 2020 Aug; 26(8):996-1005. PubMed ID: 32312846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of antisense oligonucleotide length on dystrophin exon skipping.
    Harding PL; Fall AM; Honeyman K; Fletcher S; Wilton SD
    Mol Ther; 2007 Jan; 15(1):157-66. PubMed ID: 17164787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of modified U1 small nuclear RNA for rescue from exon 7 skipping caused by 5'-splice site mutation of human cathepsin A gene.
    Yamazaki N; Kanazawa K; Kimura M; Ike H; Shinomiya M; Tanaka S; Shinohara Y; Minakawa N; Itoh K; Takiguchi Y
    Gene; 2018 Nov; 677():41-48. PubMed ID: 30010039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy.
    Echigoya Y; Mouly V; Garcia L; Yokota T; Duddy W
    PLoS One; 2015; 10(3):e0120058. PubMed ID: 25816009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induced dystrophin exon skipping in human muscle explants.
    McClorey G; Fall AM; Moulton HM; Iversen PL; Rasko JE; Ryan M; Fletcher S; Wilton SD
    Neuromuscul Disord; 2006 Oct; 16(9-10):583-90. PubMed ID: 16919955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisense Oligonucleotide Rescue of Deep-Intronic Variants Activating Pseudoexons in the 6-Pyruvoyl-Tetrahydropterin Synthase Gene.
    Martínez-Pizarro A; Leal F; Holm LL; Doktor TK; Petersen USS; Bueno M; Thöny B; Pérez B; Andresen BS; Desviat LR
    Nucleic Acid Ther; 2022 Oct; 32(5):378-390. PubMed ID: 35833796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine-PNA (peptide nucleic acid) conjugates targeting intron-exon junctions.
    Shiraishi T; Eysturskarth J; Nielsen PE
    BMC Cancer; 2010 Jun; 10():342. PubMed ID: 20591158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences.
    Krawczak M; Reiss J; Cooper DN
    Hum Genet; 1992; 90(1-2):41-54. PubMed ID: 1427786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Background splicing as a predictor of aberrant splicing in genetic disease.
    D A; Y L; R S; H D; E B; Rm W; I V; L C; N J D
    RNA Biol; 2022; 19(1):256-265. PubMed ID: 35188075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.