BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 34302116)

  • 1. Catch me if you can: how AML and its niche escape immunotherapy.
    Tettamanti S; Pievani A; Biondi A; Dotti G; Serafini M
    Leukemia; 2022 Jan; 36(1):13-22. PubMed ID: 34302116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunotherapeutic Concepts to Target Acute Myeloid Leukemia: Focusing on the Role of Monoclonal Antibodies, Hypomethylating Agents and the Leukemic Microenvironment.
    Gbolahan OB; Zeidan AM; Stahl M; Abu Zaid M; Farag S; Paczesny S; Konig H
    Int J Mol Sci; 2017 Jul; 18(8):. PubMed ID: 28758974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The progress and current status of immunotherapy in acute myeloid leukemia.
    Yang D; Zhang X; Zhang X; Xu Y
    Ann Hematol; 2017 Dec; 96(12):1965-1982. PubMed ID: 29080982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Approaches to Acute Myeloid Leukemia Immunotherapy.
    Beyar-Katz O; Gill S
    Clin Cancer Res; 2018 Nov; 24(22):5502-5515. PubMed ID: 29903894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vaccine and Cell-based Therapeutic Approaches in Acute Myeloid Leukemia.
    Agrawal V; Gbolahan OB; Stahl M; Zeidan AM; Zaid MA; Farag SS; Konig H
    Curr Cancer Drug Targets; 2020; 20(7):473-489. PubMed ID: 32357813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute myeloid leukaemia and the immune system: implications for immunotherapy.
    Barrett AJ
    Br J Haematol; 2020 Jan; 188(1):147-158. PubMed ID: 31782805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune escape and immunotherapy of acute myeloid leukemia.
    Vago L; Gojo I
    J Clin Invest; 2020 Apr; 130(4):1552-1564. PubMed ID: 32235097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Update on the Clinical Evaluation of Antibody-Based Therapeutics in Acute Myeloid Leukemia.
    Venugopal S; Daver N; Ravandi F
    Curr Hematol Malig Rep; 2021 Feb; 16(1):89-96. PubMed ID: 33630233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the immunosuppressive microenvironment in acute myeloid leukemia development and treatment.
    Isidori A; Salvestrini V; Ciciarello M; Loscocco F; Visani G; Parisi S; Lecciso M; Ocadlikova D; Rossi L; Gabucci E; Clissa C; Curti A
    Expert Rev Hematol; 2014 Dec; 7(6):807-18. PubMed ID: 25227702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escape from T-cell-targeting immunotherapies in acute myeloid leukemia.
    Vadakekolathu J; Rutella S
    Blood; 2024 Jun; 143(26):2689-2700. PubMed ID: 37467496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunotherapy in leukaemia.
    Mu X; Chen C; Dong L; Kang Z; Sun Z; Chen X; Zheng J; Zhang Y
    Acta Biochim Biophys Sin (Shanghai); 2023 Jun; 55(6):974-987. PubMed ID: 37272727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immune-Based Therapies in Acute Leukemia.
    Witkowski MT; Lasry A; Carroll WL; Aifantis I
    Trends Cancer; 2019 Oct; 5(10):604-618. PubMed ID: 31706508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monoclonal Antibodies in Acute Myeloid Leukemia-Are We There Yet?
    Abaza Y; Fathi AT
    Cancer J; 2022 Jan-Feb 01; 28(1):37-42. PubMed ID: 35072372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immune therapies in acute myeloid leukemia: a focus on monoclonal antibodies and immune checkpoint inhibitors.
    Assi R; Kantarjian H; Ravandi F; Daver N
    Curr Opin Hematol; 2018 Mar; 25(2):136-145. PubMed ID: 29206680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting CD38 in acute myeloid leukemia interferes with leukemia trafficking and induces phagocytosis.
    Farber M; Chen Y; Arnold L; Möllmann M; Boog-Whiteside E; Lin YA; Reinhardt HC; Dührsen U; Hanoun M
    Sci Rep; 2021 Nov; 11(1):22062. PubMed ID: 34764342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic cancer vaccine therapy for acute myeloid leukemia.
    Wu M; Wang S; Chen JY; Zhou LJ; Guo ZW; Li YH
    Immunotherapy; 2021 Jul; 13(10):863-877. PubMed ID: 33955237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective recruitment of γδ T cells by a bispecific antibody for the treatment of acute myeloid leukemia.
    Ganesan R; Chennupati V; Ramachandran B; Hansen MR; Singh S; Grewal IS
    Leukemia; 2021 Aug; 35(8):2274-2284. PubMed ID: 33526858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment.
    Mussai F; De Santo C; Abu-Dayyeh I; Booth S; Quek L; McEwen-Smith RM; Qureshi A; Dazzi F; Vyas P; Cerundolo V
    Blood; 2013 Aug; 122(5):749-58. PubMed ID: 23733335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blocking migration of regulatory T cells to leukemic hematopoietic microenvironment delays disease progression in mouse leukemia model.
    Wang R; Feng W; Wang H; Wang L; Yang X; Yang F; Zhang Y; Liu X; Zhang D; Ren Q; Feng X; Zheng G
    Cancer Lett; 2020 Jan; 469():151-161. PubMed ID: 31669202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the plasticity of mesenchymal stromal cells to reroute the course of acute myeloid leukemia.
    Borella G; Da Ros A; Borile G; Porcù E; Tregnago C; Benetton M; Marchetti A; Bisio V; Montini B; Michielotto B; Cani A; Leszl A; Campodoni E; Sandri M; Montesi M; Bresolin S; Cairo S; Buldini B; Locatelli F; Pigazzi M
    Blood; 2021 Aug; 138(7):557-570. PubMed ID: 34010415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.