These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 34302200)
1. Anaerobic hydrolysis of complex substrates in full-scale aerobic granular sludge: enzymatic activity determined in different sludge fractions. Toja Ortega S; Pronk M; de Kreuk MK Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):6073-6086. PubMed ID: 34302200 [TBL] [Abstract][Full Text] [Related]
2. Hydrolysis capacity of different sized granules in a full-scale aerobic granular sludge (AGS) reactor. Toja Ortega S; van den Berg L; Pronk M; de Kreuk MK Water Res X; 2022 Aug; 16():100151. PubMed ID: 35965888 [TBL] [Abstract][Full Text] [Related]
3. Utilizing anaerobic substrate distribution for growth of aerobic granular sludge in continuous-flow reactors. Haaksman VA; van Dijk EJH; Al-Zuhairy S; Mulders M; Loosdrecht MCMV; Pronk M Water Res; 2024 Jun; 257():121531. PubMed ID: 38701553 [TBL] [Abstract][Full Text] [Related]
4. Treatment of real domestic sewage in a pilot-scale aerobic granular sludge reactor: Assessing start-up and operational control. Campos F; Guimarães NR; Maia FC; Sandoval MZ; Bassin JP; Bueno RF; Piveli RP Water Environ Res; 2021 Jun; 93(6):896-905. PubMed ID: 33176037 [TBL] [Abstract][Full Text] [Related]
5. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
6. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater. Franca RD; Vieira A; Mata AM; Carvalho GS; Pinheiro HM; Lourenço ND Water Res; 2015 Nov; 85():327-36. PubMed ID: 26343991 [TBL] [Abstract][Full Text] [Related]
7. Impact of primary sedimentation on granulation and treatment performance of municipal wastewater by aerobic granular sludge process. Kosar S; Isik O; Cicekalan B; Gulhan H; Sagir Kurt E; Atli E; Basa S; Ozgun H; Koyuncu I; van Loosdrecht MCM; Ersahin ME J Environ Manage; 2022 Aug; 315():115191. PubMed ID: 35526399 [TBL] [Abstract][Full Text] [Related]
8. Digestibility of waste aerobic granular sludge from a full-scale municipal wastewater treatment system. Guo H; van Lier JB; de Kreuk M Water Res; 2020 Apr; 173():115617. PubMed ID: 32070832 [TBL] [Abstract][Full Text] [Related]
9. Effects of high-concentration influent suspended solids on aerobic granulation in pilot-scale sequencing batch reactors treating real domestic wastewater. Cetin E; Karakas E; Dulekgurgen E; Ovez S; Kolukirik M; Yilmaz G Water Res; 2018 Mar; 131():74-89. PubMed ID: 29275102 [TBL] [Abstract][Full Text] [Related]
10. An investigation into the optimal granular sludge size for simultaneous nitrogen and phosphate removal. Nguyen Quoc B; Armenta M; Carter JA; Bucher R; Sukapanpotharam P; Bryson SJ; Stahl DA; Stensel HD; Winkler MH Water Res; 2021 Jun; 198():117119. PubMed ID: 33957310 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic fermentation of aerobic granular sludge: Insight into the effect of granule size and sludge structure on hydrolysis and acidification. Zou J; Cai L; Lin J; Wang R; Li J; Jia M J Environ Manage; 2023 Oct; 343():118202. PubMed ID: 37229861 [TBL] [Abstract][Full Text] [Related]
12. Influence of residual anaerobic granular sludge (AnGS) from anaerobically digested molasses wastewater in aerobic granular sludge reactor. Zou X; Gao M; Sun H; Zhang Y; Yao Y; Guo H; Liu Y Sci Total Environ; 2024 Nov; 949():175206. PubMed ID: 39094659 [TBL] [Abstract][Full Text] [Related]
13. Impact of the anaerobic feeding mode on substrate distribution in aerobic granular sludge. Haaksman VA; Schouteren M; van Loosdrecht MCM; Pronk M Water Res; 2023 Apr; 233():119803. PubMed ID: 36870106 [TBL] [Abstract][Full Text] [Related]
14. High-strength anaerobic digestion wastewater treatment by aerobic granular sludge in a step-by-step strategy. Xiong W; Wang L; Zhou N; Fan A; Wang S; Su H J Environ Manage; 2020 May; 262():110245. PubMed ID: 32090890 [TBL] [Abstract][Full Text] [Related]
15. Structural extracellular polymeric substances determine the difference in digestibility between waste activated sludge and aerobic granules. Guo H; Felz S; Lin Y; van Lier JB; de Kreuk M Water Res; 2020 Aug; 181():115924. PubMed ID: 32492593 [TBL] [Abstract][Full Text] [Related]
16. Formation of aerobic granules for the treatment of real and low-strength municipal wastewater using a sequencing batch reactor operated at constant volume. Derlon N; Wagner J; da Costa RHR; Morgenroth E Water Res; 2016 Nov; 105():341-350. PubMed ID: 27639343 [TBL] [Abstract][Full Text] [Related]
17. Impact of influent COD/N ratio on disintegration of aerobic granular sludge. Luo J; Hao T; Wei L; Mackey HR; Lin Z; Chen GH Water Res; 2014 Oct; 62():127-35. PubMed ID: 24950459 [TBL] [Abstract][Full Text] [Related]
18. Effect of the co-treatment of synthetic faecal sludge and wastewater in an aerobic granular sludge system. Barrios-Hernández ML; Buenaño-Vargas C; García H; Brdjanovic D; van Loosdrecht MCM; Hooijmans CM Sci Total Environ; 2020 Nov; 741():140480. PubMed ID: 32886969 [TBL] [Abstract][Full Text] [Related]
19. Laboratory and full-scale performances of integrated anaerobic granule-aerobic biofilm-activated sludge processes for high strength recalcitrant paint wastewater. Show KY; Ling M; Guo H; Lee DJ Bioresour Technol; 2020 Aug; 310():123376. PubMed ID: 32334358 [TBL] [Abstract][Full Text] [Related]
20. Characterization of aerobic granular sludge of different sizes for nitrogen and phosphorus removal. Li ZH; Zhu YM; Zhang YL; Zhang YR; He CB; Yang CJ Environ Technol; 2019 Nov; 40(27):3622-3631. PubMed ID: 29855222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]