BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34302311)

  • 1. Spin-Regulated Electron Transfer and Exchange-Enhanced Reactivity in Fe
    Feng J; Shaik S; Wang B
    Angew Chem Int Ed Engl; 2021 Sep; 60(37):20430-20436. PubMed ID: 34302311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate-Dependent Cleavage Site Selection by Unconventional Radical S-Adenosylmethionine Enzymes in Diphthamide Biosynthesis.
    Dong M; Horitani M; Dzikovski B; Freed JH; Ealick SE; Hoffman BM; Lin H
    J Am Chem Soc; 2017 Apr; 139(16):5680-5683. PubMed ID: 28383907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dph3 Enables Aerobic Diphthamide Biosynthesis by Donating One Iron Atom to Transform a [3Fe-4S] to a [4Fe-4S] Cluster in Dph1-Dph2.
    Zhang Y; Su D; Dzikovski B; Majer SH; Coleman R; Chandrasekaran S; Fenwick MK; Crane BR; Lancaster KM; Freed JH; Lin H
    J Am Chem Soc; 2021 Jun; 143(25):9314-9319. PubMed ID: 34154323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The asymmetric function of Dph1-Dph2 heterodimer in diphthamide biosynthesis.
    Dong M; Dando EE; Kotliar I; Su X; Dzikovski B; Freed JH; Lin H
    J Biol Inorg Chem; 2019 Sep; 24(6):777-782. PubMed ID: 31463593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic understanding of Pyrococcus horikoshii Dph2, a [4Fe-4S] enzyme required for diphthamide biosynthesis.
    Zhu X; Dzikovski B; Su X; Torelli AT; Zhang Y; Ealick SE; Freed JH; Lin H
    Mol Biosyst; 2011 Jan; 7(1):74-81. PubMed ID: 20931132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme.
    Zhang Y; Zhu X; Torelli AT; Lee M; Dzikovski B; Koralewski RM; Wang E; Freed J; Krebs C; Ealick SE; Lin H
    Nature; 2010 Jun; 465(7300):891-6. PubMed ID: 20559380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of adenosyl radical from S-adenosylmethionine (SAM) in biotin synthase.
    Kamachi T; Kouno T; Doitomi K; Yoshizawa K
    J Inorg Biochem; 2011 Jun; 105(6):850-7. PubMed ID: 21497584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organometallic Complex Formed by an Unconventional Radical S-Adenosylmethionine Enzyme.
    Dong M; Horitani M; Dzikovski B; Pandelia ME; Krebs C; Freed JH; Hoffman BM; Lin H
    J Am Chem Soc; 2016 Aug; 138(31):9755-8. PubMed ID: 27465315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dph3 is an electron donor for Dph1-Dph2 in the first step of eukaryotic diphthamide biosynthesis.
    Dong M; Su X; Dzikovski B; Dando EE; Zhu X; Du J; Freed JH; Lin H
    J Am Chem Soc; 2014 Feb; 136(5):1754-7. PubMed ID: 24422557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncanonical Radical SAM Enzyme Chemistry Learned from Diphthamide Biosynthesis.
    Dong M; Zhang Y; Lin H
    Biochemistry; 2018 Jun; 57(25):3454-3459. PubMed ID: 29708734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organometallic and radical intermediates reveal mechanism of diphthamide biosynthesis.
    Dong M; Kathiresan V; Fenwick MK; Torelli AT; Zhang Y; Caranto JD; Dzikovski B; Sharma A; Lancaster KM; Freed JH; Ealick SE; Hoffman BM; Lin H
    Science; 2018 Mar; 359(6381):1247-1250. PubMed ID: 29590073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protonation and Proton-Coupled Electron Transfer at S-Ligated [4Fe-4S] Clusters.
    Saouma CT; Morris WD; Darcy JW; Mayer JM
    Chemistry; 2015 Jun; 21(25):9256-60. PubMed ID: 25965413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The function and properties of the iron-sulfur center in spinach ferredoxin: thioredoxin reductase: a new biological role for iron-sulfur clusters.
    Staples CR; Ameyibor E; Fu W; Gardet-Salvi L; Stritt-Etter AL; Schürmann P; Knaff DB; Johnson MK
    Biochemistry; 1996 Sep; 35(35):11425-34. PubMed ID: 8784198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational engineering of previously crystallized pyruvate formate-lyase activating enzyme reveals insights into SAM binding and reductive cleavage.
    Moody JD; Hill S; Lundahl MN; Saxton AJ; Galambas A; Broderick WE; Lawrence CM; Broderick JB
    J Biol Chem; 2023 Jun; 299(6):104791. PubMed ID: 37156396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-nuclear double resonance spectroscopic evidence that S-adenosylmethionine binds in contact with the catalytically active [4Fe-4S](+) cluster of pyruvate formate-lyase activating enzyme.
    Walsby CJ; Hong W; Broderick WE; Cheek J; Ortillo D; Broderick JB; Hoffman BM
    J Am Chem Soc; 2002 Mar; 124(12):3143-51. PubMed ID: 11902903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination and mechanism of reversible cleavage of S-adenosylmethionine by the [4Fe-4S] center in lysine 2,3-aminomutase.
    Chen D; Walsby C; Hoffman BM; Frey PA
    J Am Chem Soc; 2003 Oct; 125(39):11788-9. PubMed ID: 14505379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A consensus mechanism for Radical SAM-dependent dehydrogenation? BtrN contains two [4Fe-4S] clusters.
    Grove TL; Ahlum JH; Sharma P; Krebs C; Booker SJ
    Biochemistry; 2010 May; 49(18):3783-5. PubMed ID: 20377206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for Studying the Radical SAM Enzymes in Diphthamide Biosynthesis.
    Dong M; Zhang Y; Lin H
    Methods Enzymol; 2018; 606():421-438. PubMed ID: 30097101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of Reduction of an Aminyl Radical Intermediate in the Radical SAM GTP 3',8-Cyclase MoaA.
    Pang H; Walker LM; Silakov A; Zhang P; Yang W; Elliott SJ; Yokoyama K
    J Am Chem Soc; 2021 Sep; 143(34):13835-13844. PubMed ID: 34423974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical S-adenosylmethionine maquette chemistry: Cx
    Galambas A; Miller J; Jones M; McDaniel E; Lukes M; Watts H; Copié V; Broderick JB; Szilagyi RK; Shepard EM
    J Biol Inorg Chem; 2019 Sep; 24(6):793-807. PubMed ID: 31486952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.