These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 34302399)
1. Significant Improvements in Dielectric Constant and Energy Density of Ferroelectric Polymer Nanocomposites Enabled by Ultralow Contents of Nanofillers. Li L; Cheng J; Cheng Y; Han T; Liu Y; Zhou Y; Zhao G; Zhao Y; Xiong C; Dong L; Wang Q Adv Mater; 2021 Sep; 33(35):e2102392. PubMed ID: 34302399 [TBL] [Abstract][Full Text] [Related]
2. Ultrahigh Energy Efficiency and Large Discharge Energy Density in Flexible Dielectric Nanocomposites with Pb Zou K; He C; Yu Y; Huang J; Fan Z; Lu Y; Huang H; Zhang X; Zhang Q; He Y ACS Appl Mater Interfaces; 2020 Mar; 12(11):12847-12856. PubMed ID: 32084310 [TBL] [Abstract][Full Text] [Related]
3. Scalable Polymer Nanocomposites with Record High-Temperature Capacitive Performance Enabled by Rationally Designed Nanostructured Inorganic Fillers. Li H; Ai D; Ren L; Yao B; Han Z; Shen Z; Wang J; Chen LQ; Wang Q Adv Mater; 2019 Jun; 31(23):e1900875. PubMed ID: 30977229 [TBL] [Abstract][Full Text] [Related]
4. Significantly Enhanced Energy Density by Tailoring the Interface in Hierarchically Structured TiO Prateek ; Bhunia R; Siddiqui S; Garg A; Gupta RK ACS Appl Mater Interfaces; 2019 Apr; 11(15):14329-14339. PubMed ID: 30892860 [TBL] [Abstract][Full Text] [Related]
5. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Prateek ; Thakur VK; Gupta RK Chem Rev; 2016 Apr; 116(7):4260-317. PubMed ID: 27040315 [TBL] [Abstract][Full Text] [Related]
7. Tailoring Dielectric Properties and Energy Density of Ferroelectric Polymer Nanocomposites by High-k Nanowires. Wang G; Huang X; Jiang P ACS Appl Mater Interfaces; 2015 Aug; 7(32):18017-27. PubMed ID: 26225887 [TBL] [Abstract][Full Text] [Related]
8. Ultrahigh Energy Storage Performance of Layered Polymer Nanocomposites over a Broad Temperature Range. Wang P; Yao L; Pan Z; Shi S; Yu J; Zhou Y; Liu Y; Liu J; Chi Q; Zhai J; Wang Q Adv Mater; 2021 Oct; 33(42):e2103338. PubMed ID: 34477248 [TBL] [Abstract][Full Text] [Related]
9. Challenges and Opportunities of Polymer Nanodielectrics for Capacitive Energy Storage. Zhang G; Li Q; Allahyarov E; Li Y; Zhu L ACS Appl Mater Interfaces; 2021 Aug; 13(32):37939-37960. PubMed ID: 34370438 [TBL] [Abstract][Full Text] [Related]
10. An Overview of Linear Dielectric Polymers and Their Nanocomposites for Energy Storage. Dou L; Lin YH; Nan CW Molecules; 2021 Oct; 26(20):. PubMed ID: 34684728 [TBL] [Abstract][Full Text] [Related]
11. Ultrahigh Capacitive Energy Density in Stratified 2D Nanofiller-Based Polymer Dielectric Films. Singh M; Das P; Samanta PN; Bera S; Thantirige R; Shook B; Nejat R; Behera B; Zhang Q; Dai Q; Pramanik A; Ray P; Raghavan D; Leszczynski J; Karim A; Pradhan NR ACS Nano; 2023 Oct; 17(20):20262-20272. PubMed ID: 37830778 [TBL] [Abstract][Full Text] [Related]
12. Surface-modified Ba(Zr0.3Ti0.7)O3 nanofibers by polyvinylpyrrolidone filler for poly(vinylidene fluoride) composites with enhanced dielectric constant and energy storage density. Liu S; Xue S; Xiu S; Shen B; Zhai J Sci Rep; 2016 May; 6():26198. PubMed ID: 27184360 [TBL] [Abstract][Full Text] [Related]
13. Optimizing electric field distribution via tuning cross-linked point size for improving the dielectric properties of polymer nanocomposites. Liu J; Zhang Y; Wang Z; Ding J; Yu S; Zhang Y; Jiang Z Nanoscale; 2020 Jun; 12(23):12416-12425. PubMed ID: 32490856 [TBL] [Abstract][Full Text] [Related]
14. Enhanced dielectric constant and breakdown strength of sandwiched polymer nanocomposite film for excellent energy storage. Zhang JY; Liu X; Luo FY; He L; Li YT; Li JL; Zhou YL; Sun N; Zhang QP Phys Chem Chem Phys; 2024 Aug; 26(34):22491-22497. PubMed ID: 39145725 [TBL] [Abstract][Full Text] [Related]
15. Prediction of Energy Storage Performance in Polymer Composites Using High-Throughput Stochastic Breakdown Simulation and Machine Learning. Yue D; Feng Y; Liu XX; Yin JH; Zhang WC; Guo H; Su B; Lei QQ Adv Sci (Weinh); 2022 Jun; 9(17):e2105773. PubMed ID: 35398997 [TBL] [Abstract][Full Text] [Related]
16. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions. Zhu M; Huang X; Yang K; Zhai X; Zhang J; He J; Jiang P ACS Appl Mater Interfaces; 2014 Nov; 6(22):19644-54. PubMed ID: 25365240 [TBL] [Abstract][Full Text] [Related]
17. Achieve High Dielectric and Energy-Storage Density Properties by Employing Cyanoethyl Cellulose as Fillers in PVDF-Based Polymer Composites. Wu D; Luo M; Yang R; Hu X; Lu C Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374385 [TBL] [Abstract][Full Text] [Related]
18. Ultra-Low Loading Fillers Induced Excellent Capacitive Performance in Polymer-Based Multilayer Nanocomposites under Harsh Environments. Fan X; Ding X; Wang P; Li Z; Cheng Y; Liu J; Yu J; Zhai J; Pan Z; Li W Small; 2024 Dec; 20(49):e2405786. PubMed ID: 39291954 [TBL] [Abstract][Full Text] [Related]
19. Decorating TiO Kang D; Wang G; Huang Y; Jiang P; Huang X ACS Appl Mater Interfaces; 2018 Jan; 10(4):4077-4085. PubMed ID: 29300082 [TBL] [Abstract][Full Text] [Related]
20. Polymer Nanocomposites with High Energy Density Utilizing Oriented Nanosheets and High-Dielectric-Constant Nanoparticles. Li Y; Zhou Y; Cheng S; Hu J; He J; Li Q Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]