These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 34302441)

  • 1. Wood-Derived, Conductivity and Hierarchical Pore Integrated Thick Electrode Enabling High Areal/Volumetric Energy Density for Hybrid Capacitors.
    Wang F; Liu X; Duan G; Yang H; Cheong JY; Lee J; Ahn J; Zhang Q; He S; Han J; Zhao Y; Kim ID; Jiang S
    Small; 2021 Sep; 17(35):e2102532. PubMed ID: 34302441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wood-Derived High-Mass-Loading MnO
    Chen L; Wang F; Tian Z; Guo H; Cai C; Wu Q; Du H; Liu K; Hao Z; He S; Duan G; Jiang S
    Small; 2022 Jun; 18(25):e2201307. PubMed ID: 35587178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NiCoP Nanoarray: A Superior Pseudocapacitor Electrode with High Areal Capacitance.
    Kong M; Wang Z; Wang W; Ma M; Liu D; Hao S; Kong R; Du G; Asiri AM; Yao Y; Sun X
    Chemistry; 2017 Mar; 23(18):4435-4441. PubMed ID: 28295716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Dimensional Double Hydroxide Nanoarchitecture with High Areal and Volumetric Capacitance.
    Deshmukh AD; Urade AR; Nanwani AP; Deshmukh KA; Peshwe DR; Sivaraman P; Dhoble SJ; Gupta BK
    ACS Omega; 2018 Jul; 3(7):7204-7213. PubMed ID: 31458883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opening MXene Ion Transport Channels by Intercalating PANI Nanoparticles from the Self-Assembly Approach for High Volumetric and Areal Energy Density Supercapacitors.
    Wang X; Wang Y; Liu D; Li X; Xiao H; Ma Y; Xu M; Yuan G; Chen G
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30633-30642. PubMed ID: 34156249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraordinary Thickness-Independent Electrochemical Energy Storage Enabled by Cross-Linked Microporous Carbon Nanosheets.
    Yuan G; Liang Y; Hu H; Li H; Xiao Y; Dong H; Liu Y; Zheng M
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26946-26955. PubMed ID: 31271278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Mass Loading MnO
    Huang ZH; Song Y; Feng DY; Sun Z; Sun X; Liu XX
    ACS Nano; 2018 Apr; 12(4):3557-3567. PubMed ID: 29579384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic Liquid-Controlled Growth of NiCo
    Cui Y; Zhang J; Jin C; Liu Y; Luo W; Zheng W
    Small; 2019 Jan; 15(3):e1804318. PubMed ID: 30556315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Fe₃O₄@Fe₂O₃ Core-Shell Nanorod Arrays as High-Performance Anodes for Asymmetric Supercapacitors.
    Tang X; Jia R; Zhai T; Xia H
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27518-25. PubMed ID: 26593683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing of NiCoP/Ti
    Yu L; Li W; Wei C; Yang Q; Shao Y; Sun J
    Nanomicro Lett; 2020 Jul; 12(1):143. PubMed ID: 34138137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly (Ionic Liquid)-Metal Organic Framework-Derived Nanoporous Carbon Membranes: Facile Fabrication and Ultrahigh Areal Capacitance.
    Shi Y; Long W; Wang Y; He X; Lv B; Zuo H; Li X; Liao Y; Zhang W
    Macromol Rapid Commun; 2023 Oct; 44(20):e2300309. PubMed ID: 37501566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-controlled Ag quantum dots decorated on binder-free hierarchical NiCoP films by magnetron sputtering to boost electrochemical performance for supercapacitors.
    Liu Y; Zhong K; Liu C; Yang Y; Zhao Z; Li T; Lu Q
    Nanoscale; 2021 Apr; 13(16):7761-7773. PubMed ID: 33871518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical NiCo2 S4 Nanotube@NiCo2 S4 Nanosheet Arrays on Ni Foam for High-Performance Supercapacitors.
    Chen H; Chen S; Shao H; Li C; Fan M; Chen D; Tian G; Shu K
    Chem Asian J; 2016 Jan; 11(2):248-55. PubMed ID: 26467160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Mass Loading Asymmetric Micro-supercapacitors with Ultrahigh Areal Energy and Power Density.
    Zhu S; Li T; Bandari VK; Schmidt OG; Gruschwitz M; Tegenkamp C; Sommer M; Choudhury S
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58486-58497. PubMed ID: 34866388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microporous tungsten oxide spheres coupled with Ti
    Zhang P; Li Y; Zhang H; Yang L; Yin X; Zheng W; Ding J; Sun Z
    Nanotechnology; 2024 Aug; ():. PubMed ID: 39111321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical core-shell structures of P-Ni(OH)
    Li K; Li S; Huang F; Yu XY; Lu Y; Wang L; Chen H; Zhang H
    Nanoscale; 2018 Feb; 10(5):2524-2532. PubMed ID: 29345704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Quaternary Chalcogenide/Reduced Graphene Oxide-Based Asymmetric Supercapacitor with High Energy Density.
    Sarkar S; Howli P; Das B; Das NS; Samanta M; Das GC; Chattopadhyay KK
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22652-22664. PubMed ID: 28616963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible quasi-solid-state zinc-ion hybrid supercapacitor based on carbon cloths displays ultrahigh areal capacitance.
    Zhang Y; Wang P; Dong X; Jiang H; Cui M; Meng C
    Fundam Res; 2023 Mar; 3(2):288-297. PubMed ID: 38932920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose nanofiber derived carbon aerogel with 3D multiscale pore architecture for high-performance supercapacitors.
    Chen L; Yu H; Li Z; Chen X; Zhou W
    Nanoscale; 2021 Nov; 13(42):17837-17845. PubMed ID: 34668896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-mass loaded redox-active lignin functionalized carbonized wood collector to construct sustainable and high-performance supercapacitors.
    Wang D; Gu Y; Cheng L; Sun S; Yang W; He S; Jiang S; Dai H; Wu Q; Xiao H; Han J
    Int J Biol Macromol; 2024 Nov; 281(Pt 2):136242. PubMed ID: 39389492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.