BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 34302486)

  • 1. The clinical importance of tandem exon duplication-derived substitutions.
    Martinez Gomez L; Pozo F; Walsh TA; Abascal F; Tress ML
    Nucleic Acids Res; 2021 Aug; 49(14):8232-8246. PubMed ID: 34302486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origins and Evolution of Human Tandem Duplicated Exon Substitution Events.
    Martinez-Gomez L; Cerdán-Vélez D; Abascal F; Tress ML
    Genome Biol Evol; 2022 Dec; 14(12):. PubMed ID: 36346145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level.
    Abascal F; Ezkurdia I; Rodriguez-Rivas J; Rodriguez JM; del Pozo A; Vázquez J; Valencia A; Tress ML
    PLoS Comput Biol; 2015 Jun; 11(6):e1004325. PubMed ID: 26061177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of alternative splicing by tandem exon duplication.
    Kondrashov FA; Koonin EV
    Hum Mol Genet; 2001 Nov; 10(23):2661-9. PubMed ID: 11726553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative splicing of Wilms tumor suppressor 1 (Wt1) exon 4 results in protein isoforms with different functions.
    Schnerwitzki D; Perner B; Hoppe B; Pietsch S; Mehringer R; Hänel F; Englert C
    Dev Biol; 2014 Sep; 393(1):24-32. PubMed ID: 25014653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tandem exon duplication tends to propagate rather than to create de novo alternative splicing.
    Peng T; Li Y
    Biochem Biophys Res Commun; 2009 May; 383(2):163-6. PubMed ID: 19351527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolutionary fate of alternatively spliced homologous exons after gene duplication.
    Abascal F; Tress ML; Valencia A
    Genome Biol Evol; 2015 Apr; 7(6):1392-403. PubMed ID: 25931610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of GENCODE and RefSeq gene annotation and the impact of reference geneset on variant effect prediction.
    Frankish A; Uszczynska B; Ritchie GR; Gonzalez JM; Pervouchine D; Petryszak R; Mudge JM; Fonseca N; Brazma A; Guigo R; Harrow J
    BMC Genomics; 2015; 16 Suppl 8(Suppl 8):S2. PubMed ID: 26110515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for widespread subfunctionalization of splice forms in vertebrate genomes.
    Lambert MJ; Cochran WO; Wilde BM; Olsen KG; Cooper CD
    Genome Res; 2015 May; 25(5):624-32. PubMed ID: 25792610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. More than one way to produce protein diversity: duplication and limited alternative splicing of an adhesion molecule gene in basal arthropods.
    Brites D; Brena C; Ebert D; Du Pasquier L
    Evolution; 2013 Oct; 67(10):2999-3011. PubMed ID: 24094349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-specific protein isoforms produced by novel splice sites in the human genome after the human-chimpanzee divergence.
    Kim DS; Hahn Y
    BMC Bioinformatics; 2012 Nov; 13():299. PubMed ID: 23148531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative splicing after gene duplication drives CEACAM1-paralog diversification in the horse.
    Mißbach S; Aleksic D; Blaschke L; Hassemer T; Lee KJ; Mansfeld M; Hänske J; Handler J; Kammerer R
    BMC Evol Biol; 2018 Mar; 18(1):32. PubMed ID: 29544443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of the exon-intron structure and alternative splicing of the MAGE-A family of cancer/testis antigens.
    Artamonova II; Gelfand MS
    J Mol Evol; 2004 Nov; 59(5):620-31. PubMed ID: 15693618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex Genes Are Preferentially Retained After Whole-Genome Duplication in Teleost Fish.
    Guo B
    J Mol Evol; 2017 Jun; 84(5-6):253-258. PubMed ID: 28492966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking the evolution of alternatively spliced exons within the Dscam family.
    Crayton ME; Powell BC; Vision TJ; Giddings MC
    BMC Evol Biol; 2006 Feb; 6():16. PubMed ID: 16483367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene duplication followed by exon structure divergence substitutes for alternative splicing in zebrafish.
    Lambert MJ; Olsen KG; Cooper CD
    Gene; 2014 Aug; 546(2):271-6. PubMed ID: 24942242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative 5' exons and differential splicing regulate expression of protein 4.1R isoforms with distinct N-termini.
    Parra MK; Gee SL; Koury MJ; Mohandas N; Conboy JG
    Blood; 2003 May; 101(10):4164-71. PubMed ID: 12522012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin, conservation, and loss of alternative splicing events that diversify the proteome in Saccharomycotina budding yeasts.
    Hurtig JE; Kim M; Orlando-Coronel LJ; Ewan J; Foreman M; Notice LA; Steiger MA; van Hoof A
    RNA; 2020 Oct; 26(10):1464-1480. PubMed ID: 32631843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function.
    Ezkurdia I; del Pozo A; Frankish A; Rodriguez JM; Harrow J; Ashman K; Valencia A; Tress ML
    Mol Biol Evol; 2012 Sep; 29(9):2265-83. PubMed ID: 22446687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative splicing and exon duplication generates 10 unique porcine 5-HT 4 receptor splice variants including a functional homofusion variant.
    De Maeyer JH; Aerssens J; Verhasselt P; Lefebvre RA
    Physiol Genomics; 2008 Jun; 34(1):22-33. PubMed ID: 18430808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.