These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 34302493)

  • 1. Opportunities and limits of controlled-environment plant phenotyping for climate response traits.
    Langstroff A; Heuermann MC; Stahl A; Junker A
    Theor Appl Genet; 2022 Jan; 135(1):1-16. PubMed ID: 34302493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crop breeding for a changing climate in the Pannonian region: towards integration of modern phenotyping tools.
    Kondić-Špika A; Mikić S; Mirosavljević M; Trkulja D; Marjanović Jeromela A; Rajković D; Radanović A; Cvejić S; Glogovac S; Dodig D; Božinović S; Šatović Z; Lazarević B; Šimić D; Novoselović D; Vass I; Pauk J; Miladinović D
    J Exp Bot; 2022 Sep; 73(15):5089-5110. PubMed ID: 35536688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling up high-throughput phenotyping for abiotic stress selection in the field.
    Smith DT; Potgieter AB; Chapman SC
    Theor Appl Genet; 2021 Jun; 134(6):1845-1866. PubMed ID: 34076731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opportunities and Limitations of Crop Phenotyping in Southern European Countries.
    Costa JM; Marques da Silva J; Pinheiro C; Barón M; Mylona P; Centritto M; Haworth M; Loreto F; Uzilday B; Turkan I; Oliveira MM
    Front Plant Sci; 2019; 10():1125. PubMed ID: 31608085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput phenotyping to dissect genotypic differences in safflower for drought tolerance.
    Joshi S; Thoday-Kennedy E; Daetwyler HD; Hayden M; Spangenberg G; Kant S
    PLoS One; 2021; 16(7):e0254908. PubMed ID: 34297757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A trait-based model ensemble approach to design rice plant types for future climate.
    Paleari L; Li T; Yang Y; Wilson LT; Hasegawa T; Boote KJ; Buis S; Hoogenboom G; Gao Y; Movedi E; Ruget F; Singh U; Stöckle CO; Tang L; Wallach D; Zhu Y; Confalonieri R
    Glob Chang Biol; 2022 Apr; 28(8):2689-2710. PubMed ID: 35043531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breeding for sustainable oilseed crop yield and quality in a changing climate.
    Attia Z; Pogoda CS; Reinert S; Kane NC; Hulke BS
    Theor Appl Genet; 2021 Jun; 134(6):1817-1827. PubMed ID: 33496832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breeding new varieties for controlled environments.
    Folta KM
    Plant Biol (Stuttg); 2019 Jan; 21 Suppl 1():6-12. PubMed ID: 30230154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breeding to adapt agriculture to climate change: affordable phenotyping solutions.
    Araus JL; Kefauver SC
    Curr Opin Plant Biol; 2018 Oct; 45(Pt B):237-247. PubMed ID: 29853283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotyping: New Windows into the Plant for Breeders.
    Watt M; Fiorani F; Usadel B; Rascher U; Muller O; Schurr U
    Annu Rev Plant Biol; 2020 Apr; 71():689-712. PubMed ID: 32097567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetics and breeding for climate change in Orphan crops.
    Kamenya SN; Mikwa EO; Song B; Odeny DA
    Theor Appl Genet; 2021 Jun; 134(6):1787-1815. PubMed ID: 33486565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crop adaptation to climate change as a consequence of long-term breeding.
    Snowdon RJ; Wittkop B; Chen TW; Stahl A
    Theor Appl Genet; 2021 Jun; 134(6):1613-1623. PubMed ID: 33221941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change challenges plant breeding.
    Xiong W; Reynolds M; Xu Y
    Curr Opin Plant Biol; 2022 Dec; 70():102308. PubMed ID: 36279790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative trait loci (QTLs) for water use and crop production traits co-locate with major QTL for tolerance to water deficit in a fine-mapping population of pearl millet (Pennisetum glaucum L. R.Br.).
    Tharanya M; Kholova J; Sivasakthi K; Seghal D; Hash CT; Raj B; Srivastava RK; Baddam R; Thirunalasundari T; Yadav R; Vadez V
    Theor Appl Genet; 2018 Jul; 131(7):1509-1529. PubMed ID: 29679097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volatilomics: a non-invasive technique for screening plant phenotypic traits.
    Jud W; Winkler JB; Niederbacher B; Niederbacher S; Schnitzler JP
    Plant Methods; 2018; 14():109. PubMed ID: 30568721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic tools to assist breeding for drought tolerance.
    Langridge P; Reynolds MP
    Curr Opin Biotechnol; 2015 Apr; 32():130-135. PubMed ID: 25531270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Phenotyping Methods for Breeding Drought-Tolerant Crops.
    Kim M; Lee C; Hong S; Kim SL; Baek JH; Kim KH
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34361030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of an intelligent artificial climate chamber for high-throughput crop phenotyping in wheat.
    Ren A; Jiang D; Kang M; Wu J; Xiao F; Hou P; Fu X
    Plant Methods; 2022 Jun; 18(1):77. PubMed ID: 35672714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breeding crops for climate resilience.
    Langridge P; Braun H; Hulke B; Ober E; Prasanna BM
    Theor Appl Genet; 2021 Jun; 134(6):1607-1611. PubMed ID: 34046700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional phenomics for improved climate resilience in Nordic agriculture.
    Roitsch T; Himanen K; Chawade A; Jaakola L; Nehe A; Alexandersson E
    J Exp Bot; 2022 Sep; 73(15):5111-5127. PubMed ID: 35727101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.