These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 34302536)
1. Engineering Ruthenium-Based Electrocatalysts for Effective Hydrogen Evolution Reaction. Yang Y; Yu Y; Li J; Chen Q; Du Y; Rao P; Li R; Jia C; Kang Z; Deng P; Shen Y; Tian X Nanomicro Lett; 2021 Jul; 13(1):160. PubMed ID: 34302536 [TBL] [Abstract][Full Text] [Related]
2. Ruthenium-based single atom catalysts: synthesis and application in the electrocatalytic hydrogen evolution reaction. Li F; Wu Q; Yuan W; Chen Z Dalton Trans; 2024 Jul; 53(29):12022-12033. PubMed ID: 38952237 [TBL] [Abstract][Full Text] [Related]
3. Ruthenium-Based Electrocatalysts for Hydrogen Evolution Reaction: from Nanoparticles to Single Atoms. Li Y; Liu X; Xu J; Chen S Small; 2024 Nov; 20(45):e2402846. PubMed ID: 39072957 [TBL] [Abstract][Full Text] [Related]
4. Earth-Abundant Transition-Metal-Based Bifunctional Electrocatalysts for Overall Water Splitting in Alkaline Media. Yu J; Le TA; Tran NQ; Lee H Chemistry; 2020 May; 26(29):6423-6436. PubMed ID: 32103541 [TBL] [Abstract][Full Text] [Related]
5. Strategies for Promoting Catalytic Performance of Ru-Based Electrocatalysts towards Oxygen/Hydrogen Evolution Reaction. Chu X; Wang L; Li J; Xu H Chem Rec; 2023 Apr; 23(4):e202300013. PubMed ID: 36806446 [TBL] [Abstract][Full Text] [Related]
6. Scalable Synthesis of a Ruthenium-Based Electrocatalyst as a Promising Alternative to Pt for Hydrogen Evolution Reaction. Zhang Z; Li P; Feng Q; Wei B; Deng C; Fan J; Li H; Wang H ACS Appl Mater Interfaces; 2018 Sep; 10(38):32171-32179. PubMed ID: 30102022 [TBL] [Abstract][Full Text] [Related]
7. Surface and Interface Engineering Strategies for MoS Ding YM; Li NW; Yuan S; Yu L Chem Asian J; 2022 Jul; 17(14):e202200178. PubMed ID: 35438831 [TBL] [Abstract][Full Text] [Related]
8. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting. Jiang WJ; Tang T; Zhang Y; Hu JS Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638 [TBL] [Abstract][Full Text] [Related]
9. Engineering the electronic structure of sub-nanometric Ru clusters Song Y; Zhang Y; Gao W; Yu C; Xing J; Liu K; Ma D Chem Sci; 2024 Jun; 15(25):9851-9857. PubMed ID: 38939150 [TBL] [Abstract][Full Text] [Related]
10. Uniformly dispersed ruthenium nanoparticles on porous carbon from coffee waste outperform platinum for hydrogen evolution reaction in alkaline media. Sukhbaatar B; Qing W; Seo J; Yoon S; Yoo B Sci Rep; 2024 Mar; 14(1):5850. PubMed ID: 38462651 [TBL] [Abstract][Full Text] [Related]
11. Recent Progress of Transition Metal Compounds as Electrocatalysts for Electrocatalytic Water Splitting. Yu Y; Wang T; Zhang Y; You J; Hu F; Zhang H Chem Rec; 2023 Nov; 23(11):e202300109. PubMed ID: 37489551 [TBL] [Abstract][Full Text] [Related]
12. Metal Electrocatalysts for Hydrogen Production in Water Splitting. Kazemi A; Manteghi F; Tehrani Z ACS Omega; 2024 Feb; 9(7):7310-7335. PubMed ID: 38405471 [TBL] [Abstract][Full Text] [Related]
13. Recent Progress in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction. Qin X; Ola O; Zhao J; Yang Z; Tiwari SK; Wang N; Zhu Y Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683662 [TBL] [Abstract][Full Text] [Related]
14. In Situ Engineering Multifunctional Active Sites of Ruthenium-Nickel Alloys for pH-Universal Ampere-Level Current-Density Hydrogen Evolution. Liu Y; Shi H; Dai TY; Zeng SP; Han GF; Wang TH; Wen Z; Lang XY; Jiang Q Small; 2024 Aug; 20(34):e2311509. PubMed ID: 38587968 [TBL] [Abstract][Full Text] [Related]
15. Recent Advances in Co-Based Electrocatalysts for Hydrogen Evolution Reaction. Wang B; Yang F; Feng L Small; 2023 Nov; 19(45):e2302866. PubMed ID: 37434101 [TBL] [Abstract][Full Text] [Related]
16. Ruthenium/Ruthenium oxide hybrid nanoparticles anchored on hollow spherical Copper-Cobalt Nitride/Nitrogen doped carbon nanostructures to promote alkaline water splitting: Boosting catalytic performance via synergy between morphology engineering, electron transfer tuning and electronic behavior modulation. Rezaee S; Shahrokhian S J Colloid Interface Sci; 2022 Nov; 626():1070-1084. PubMed ID: 35839676 [TBL] [Abstract][Full Text] [Related]
17. Recent Tendency on Transition-Metal Phosphide Electrocatalysts for the Hydrogen Evolution Reaction in Alkaline Media. Yoon SJ; Lee SJ; Kim MH; Park HA; Kang HS; Bae SY; Jeon IY Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764642 [TBL] [Abstract][Full Text] [Related]
18. Wood-Structured Nanomaterials as Highly Efficient, Self-Standing Electrocatalysts for Water Splitting. Huang J; Shi Z; Mao C; Yang G; Chen Y Small; 2024 Oct; 20(40):e2402511. PubMed ID: 38837861 [TBL] [Abstract][Full Text] [Related]
19. Strategies for Designing High-Performance Hydrogen Evolution Reaction Electrocatalysts at Large Current Densities above 1000 mA cm Jin M; Zhang X; Niu S; Wang Q; Huang R; Ling R; Huang J; Shi R; Amini A; Cheng C ACS Nano; 2022 Aug; 16(8):11577-11597. PubMed ID: 35952364 [TBL] [Abstract][Full Text] [Related]
20. Ensemble Effect of Ruthenium Single-Atom and Nanoparticle Catalysts for Efficient Hydrogen Evolution in Neutral Media. Liu Y; Wu J; Zhang Y; Jin X; Li J; Xi X; Deng Y; Jiao S; Lei Z; Li X; Cao R ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36905349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]