BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34302569)

  • 1. Involvement of ectonucleotidases and purinergic receptor expression during acute Chagas disease in the cortex of mice treated with resveratrol and benznidazole.
    Fracasso M; Reichert K; Bottari NB; da Silva AD; Schetinger MRC; Monteiro SG; da Silva AS
    Purinergic Signal; 2021 Sep; 17(3):493-502. PubMed ID: 34302569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroprotective role of resveratrol mediated by purinergic signalling in cerebral cortex of mice infected by Toxoplasma gondii.
    Bottari NB; Reichert KP; Fracasso M; Dutra A; Assmann CE; Ulrich H; Schetinger MRC; Morsch VM; Da Silva AS
    Parasitol Res; 2020 Sep; 119(9):2897-2905. PubMed ID: 32677001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resveratrol impacts in oxidative stress in liver during Trypanosoma cruzi infection.
    Fracasso M; Dutra da Silva A; Bottari NB; Monteiro SG; Garzon LR; Farias de Souza LA; Schetinger MRC; Da Silva AS
    Microb Pathog; 2021 Apr; 153():104800. PubMed ID: 33609651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of resveratrol on the differentiation fate of neural progenitor cells of mouse embryos infected with Trypanosoma cruzi.
    Fracasso M; Bottari NB; da Silva AD; Grando TH; Pillat MM; Ulrich H; Vidal T; de Andrade CM; Monteiro SG; Nascimento LFN; Miletti LC; Schafer da Silva A
    Microb Pathog; 2019 Jul; 132():156-161. PubMed ID: 31029718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the impact of low doses of nano-formulated benznidazole in acute experimental Chagas disease.
    Rial MS; Scalise ML; Arrúa EC; Esteva MI; Salomon CJ; Fichera LE
    PLoS Negl Trop Dis; 2017 Dec; 11(12):e0006119. PubMed ID: 29267280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Memory impairment in chronic experimental Chagas disease: Benznidazole therapy reversed cognitive deficit in association with reduction of parasite load and oxidative stress in the nervous tissue.
    Vilar-Pereira G; Castaño Barrios L; Silva AAD; Martins Batista A; Resende Pereira I; Cruz Moreira O; Britto C; Mata Dos Santos HA; Lannes-Vieira J
    PLoS One; 2021; 16(1):e0244710. PubMed ID: 33400707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trypanosoma cruzi: Does the intake of nanoencapsulated benznidazole control acute infections?
    Dutra da Silva A; Fracasso M; Bottari NB; Gundel S; Ourique AF; Assmann CE; Ferreira DASP; Castro MFV; Reichert KP; de Souza LAF; da Veiga ML; da Rocha MIUM; Monteiro SG; Morsch VM; Chitolina Schetinger MR; da Silva AS
    Exp Parasitol; 2023 Jun; 249():108520. PubMed ID: 37001581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocarrier-enhanced intracellular delivery of benznidazole for treatment of Trypanosoma cruzi infection.
    Li X; Yi S; Scariot DB; Martinez SJ; Falk BA; Olson CL; Romano PS; Scott EA; Engman DM
    JCI Insight; 2021 May; 6(9):. PubMed ID: 33986194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment with 3'-deoxyadenosine and deoxycoformycin in mice infected by Trypanosoma cruzi and its side effect on purinergic enzymes.
    do Carmo GM; Doleski PH; de Sá MF; Grando TH; Azevedo MI; Manzoni AG; Leal DBR; Gressler LT; Henker LC; Mendes RE; Baldissera MD; Monteiro SG; Stefani LM; Da Silva AS
    Microb Pathog; 2017 Dec; 113():51-56. PubMed ID: 29051060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vaccine-linked chemotherapy with a low dose of benznidazole plus a bivalent recombinant protein vaccine prevents the development of cardiac fibrosis caused by Trypanosoma cruzi in chronically-infected BALB/c mice.
    Dzul-Huchim VM; Ramirez-Sierra MJ; Martinez-Vega PP; Rosado-Vallado ME; Arana-Argaez VE; Ortega-Lopez J; Gusovsky F; Dumonteil E; Cruz-Chan JV; Hotez P; Bottazzi ME; Villanueva-Lizama LE
    PLoS Negl Trop Dis; 2022 Sep; 16(9):e0010258. PubMed ID: 36095001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benznidazole alters the pattern of Cyclophosphamide-induced reactivation in experimental Trypanosoma cruzi-dependent lineage infection.
    Santos DM; Martins TA; Caldas IS; Diniz LF; Machado-Coelho GL; Carneiro CM; Oliveira Rde P; Talvani A; Lana M; Bahia MT
    Acta Trop; 2010 Feb; 113(2):134-8. PubMed ID: 19854145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thioridazine aggravates skeletal myositis, systemic and liver inflammation in Trypanosoma cruzi-infected and benznidazole-treated mice.
    Mendonça AAS; Gonçalves-Santos E; Souza-Silva TG; González-Lozano KJ; Caldas IS; Gonçalves RV; Diniz LF; Novaes RD
    Int Immunopharmacol; 2020 Aug; 85():106611. PubMed ID: 32447223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The β-blocker carvedilol and the benznidazole modulate the cardiac immune response in the acute infection induced by Colombian strain of the Trypanosoma cruzi.
    Horta AL; Figueiredo VP; Leite ALJ; Costa GP; Menezes APJ; Ramos CO; Pedrosa TCF; Bezerra FS; Vieira PMA; Talvani A
    Mem Inst Oswaldo Cruz; 2018 Oct; 113(11):e180271. PubMed ID: 30365644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purinergic Antagonist Suramin Aggravates Myocarditis and Increases Mortality by Enhancing Parasitism, Inflammation, and Reactive Tissue Damage in
    Novaes RD; Santos EC; Cupertino MC; Bastos DSS; Mendonça AAS; Marques-da-Silva EA; Cardoso SA; Fietto JLR; Oliveira LL
    Oxid Med Cell Longev; 2018; 2018():7385639. PubMed ID: 30364017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curcumin Enhances the Anti-Trypanosoma cruzi Activity of Benznidazole-Based Chemotherapy in Acute Experimental Chagas Disease.
    Novaes RD; Sartini MV; Rodrigues JP; Gonçalves RV; Santos EC; Souza RL; Caldas IS
    Antimicrob Agents Chemother; 2016 Jun; 60(6):3355-64. PubMed ID: 27001816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of vaccine-linked chemotherapy on liver health in a mouse model of chronic Trypanosoma cruzi infection.
    Nguyen DM; Poveda C; Pollet J; Gusovsky F; Bottazzi ME; Hotez PJ; Jones KM
    PLoS Negl Trop Dis; 2023 Nov; 17(11):e0011519. PubMed ID: 37988389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of dehydroepiandrosterone-sulfate (DHEA-S) and benznidazole treatments during acute infection of two different Trypanosoma cruzi strains.
    Santos CD; Loria RM; Oliveira LG; Kuehn CC; Toldo MP; Albuquerque S; do Prado JC
    Immunobiology; 2010 Dec; 215(12):980-6. PubMed ID: 20163889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pentamidine antagonizes the benznidazole's effect in vitro, and lacks of synergy in vivo: Implications about the polyamine transport as an anti-Trypanosoma cruzi target.
    Seguel V; Castro L; Reigada C; Cortes L; Díaz MV; Miranda MR; Pereira CA; Lapier M; Campos-Estrada C; Morello A; Kemmerling U; Maya JD; López-Muñoz R
    Exp Parasitol; 2016 Dec; 171():23-32. PubMed ID: 27729250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promising Efficacy of Benznidazole Nanoparticles in Acute Trypanosoma cruzi Murine Model: In-Vitro and In-Vivo Studies.
    Scalise ML; Arrúa EC; Rial MS; Esteva MI; Salomon CJ; Fichera LE
    Am J Trop Med Hyg; 2016 Aug; 95(2):388-93. PubMed ID: 27246447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of benznidazole treatment on the functional response of Trypanosoma cruzi antigen-specific CD4+CD8+ T cells in chronic Chagas disease patients.
    Pérez-Antón E; Egui A; Thomas MC; Puerta CJ; González JM; Cuéllar A; Segovia M; López MC
    PLoS Negl Trop Dis; 2018 May; 12(5):e0006480. PubMed ID: 29750791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.