BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34302651)

  • 1. Protocol for Morphological and Functional Phenotype Analysis of hiPS-Derived Cardiomyocytes.
    Li J; Lee JK
    Methods Mol Biol; 2021; 2320():91-100. PubMed ID: 34302651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications.
    Goldfracht I; Efraim Y; Shinnawi R; Kovalev E; Huber I; Gepstein A; Arbel G; Shaheen N; Tiburcy M; Zimmermann WH; Machluf M; Gepstein L
    Acta Biomater; 2019 Jul; 92():145-159. PubMed ID: 31075518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Method for Contraction Force Measurement of hiPSC-Derived Engineered Cardiac Tissues.
    Fujiwara Y; Deguchi K; Miki K; Nishimoto T; Yoshida Y
    Methods Mol Biol; 2021; 2320():171-180. PubMed ID: 34302658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contractile Force Measurement of Engineered Cardiac Tissues Derived from Human iPS Cells.
    Sasaki D; Matsuura K; Shimizu T
    Methods Mol Biol; 2021; 2320():161-170. PubMed ID: 34302657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Cylindrical Engineered Cardiac Tissues from Human iPS Cell-Derived Cardiovascular Cell Lineages.
    Masumoto H
    Methods Mol Biol; 2021; 2320():81-88. PubMed ID: 34302650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pivotal Role of Non-cardiomyocytes in Electromechanical and Therapeutic Potential of Induced Pluripotent Stem Cell-Derived Engineered Cardiac Tissue.
    Iseoka H; Miyagawa S; Fukushima S; Saito A; Masuda S; Yajima S; Ito E; Sougawa N; Takeda M; Harada A; Lee JK; Sawa Y
    Tissue Eng Part A; 2018 Feb; 24(3-4):287-300. PubMed ID: 28498040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trichostatin A enhances differentiation of human induced pluripotent stem cells to cardiogenic cells for cardiac tissue engineering.
    Lim SY; Sivakumaran P; Crombie DE; Dusting GJ; Pébay A; Dilley RJ
    Stem Cells Transl Med; 2013 Sep; 2(9):715-25. PubMed ID: 23884641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of functional murine cardiac myocytes from induced pluripotent stem cells.
    Mauritz C; Schwanke K; Reppel M; Neef S; Katsirntaki K; Maier LS; Nguemo F; Menke S; Haustein M; Hescheler J; Hasenfuss G; Martin U
    Circulation; 2008 Jul; 118(5):507-17. PubMed ID: 18625890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient generation of transgene- and feeder-free induced pluripotent stem cells from human dental mesenchymal stem cells and their chemically defined differentiation into cardiomyocytes.
    Tan X; Dai Q; Guo T; Xu J; Dai Q
    Biochem Biophys Res Commun; 2018 Jan; 495(4):2490-2497. PubMed ID: 29217199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TRPV-1-mediated elimination of residual iPS cells in bioengineered cardiac cell sheet tissues.
    Matsuura K; Seta H; Haraguchi Y; Alsayegh K; Sekine H; Shimizu T; Hagiwara N; Yamazaki K; Okano T
    Sci Rep; 2016 Feb; 6():21747. PubMed ID: 26888607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of human cardiac muscle electromechanically matured to an adult-like phenotype.
    Ronaldson-Bouchard K; Yeager K; Teles D; Chen T; Ma S; Song L; Morikawa K; Wobma HM; Vasciaveo A; Ruiz EC; Yazawa M; Vunjak-Novakovic G
    Nat Protoc; 2019 Oct; 14(10):2781-2817. PubMed ID: 31492957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced pluripotent stem cells for cardiac repair.
    Zwi-Dantsis L; Gepstein L
    Cell Mol Life Sci; 2012 Oct; 69(19):3285-99. PubMed ID: 22960788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Cardiovascular Diseases with hiPSC-Derived Cardiomyocytes in 2D and 3D Cultures.
    Sacchetto C; Vitiello L; de Windt LJ; Rampazzo A; Calore M
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Protocols for Fabricating a Large Human Cardiac Muscle Patch from Human Induced Pluripotent Stem Cells.
    Gao L; Zhang JJ
    Methods Mol Biol; 2021; 2158():187-197. PubMed ID: 32857374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced structural maturation of human induced pluripotent stem cell-derived cardiomyocytes under a controlled microenvironment in a microfluidic system.
    Kolanowski TJ; Busek M; Schubert M; Dmitrieva A; Binnewerg B; Pöche J; Fisher K; Schmieder F; Grünzner S; Hansen S; Richter A; El-Armouche A; Sonntag F; Guan K
    Acta Biomater; 2020 Jan; 102():273-286. PubMed ID: 31778832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues.
    Feric NT; Radisic M
    Adv Drug Deliv Rev; 2016 Jan; 96():110-34. PubMed ID: 25956564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The current status of iPS cells in cardiac research and their potential for tissue engineering and regenerative medicine.
    Martins AM; Vunjak-Novakovic G; Reis RL
    Stem Cell Rev Rep; 2014 Apr; 10(2):177-90. PubMed ID: 24425421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frame-Hydrogel Methodology for Engineering Highly Functional Cardiac Tissue Constructs.
    Helfer A; Bursac N
    Methods Mol Biol; 2021; 2158():171-186. PubMed ID: 32857373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contractile force generation by 3D hiPSC-derived cardiac tissues is enhanced by rapid establishment of cellular interconnection in matrix with muscle-mimicking stiffness.
    Lee S; Serpooshan V; Tong X; Venkatraman S; Lee M; Lee J; Chirikian O; Wu JC; Wu SM; Yang F
    Biomaterials; 2017 Jul; 131():111-120. PubMed ID: 28384492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impedance Measurement in Induced Pluripotent Stem Cell-Derived Cardiomyocytes.
    Poulton EJ
    Methods Mol Biol; 2017; 1641():201-209. PubMed ID: 28748466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.