These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 34302882)

  • 1. Effects of transcranial random noise stimulation timing on corticospinal excitability and motor function.
    Hoshi H; Kojima S; Otsuru N; Onishi H
    Behav Brain Res; 2021 Sep; 414():113479. PubMed ID: 34302882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of transcranial random noise stimulation on corticospinal excitability and motor performance.
    Abe T; Miyaguchi S; Otsuru N; Onishi H
    Neurosci Lett; 2019 Jul; 705():138-142. PubMed ID: 31028846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time course of bilateral corticospinal tract excitability in the motor-learning process.
    Miyaguchi S; Yamaguchi M; Kojima S; Yokota H; Saito K; Inukai Y; Otsuru N; Onishi H
    Neurosci Lett; 2019 Oct; 711():134410. PubMed ID: 31425823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation.
    Laczó B; Antal A; Rothkegel H; Paulus W
    Restor Neurol Neurosci; 2014; 32(3):403-10. PubMed ID: 24576783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability.
    Abdelmoula A; Baudry S; Duchateau J
    Neuroscience; 2016 May; 322():94-103. PubMed ID: 26892298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring parameters of gamma transcranial alternating current stimulation (tACS) and full-spectrum transcranial random noise stimulation (tRNS) on human pharyngeal cortical excitability.
    Zhang M; Cheng I; Sasegbon A; Dou Z; Hamdy S
    Neurogastroenterol Motil; 2021 Sep; 33(9):e14173. PubMed ID: 34081376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs.
    Pötter-Nerger M; Fischer S; Mastroeni C; Groppa S; Deuschl G; Volkmann J; Quartarone A; Münchau A; Siebner HR
    J Neurophysiol; 2009 Dec; 102(6):3180-90. PubMed ID: 19726723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor and spatial representations of action: corticospinal excitability in M1 after training with a bimanual skill.
    Park I; Buchanan JJ; McCulloch AT; Chen J; Wright DL
    Exp Brain Res; 2020 May; 238(5):1191-1202. PubMed ID: 32246187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcranial Alternating Current Stimulation Has Frequency-Dependent Effects on Motor Learning in Healthy Humans.
    Bologna M; Guerra A; Paparella G; Colella D; Borrelli A; Suppa A; Di Lazzaro V; Brown P; Berardelli A
    Neuroscience; 2019 Jul; 411():130-139. PubMed ID: 31152934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The association of motor imagery and kinesthetic illusion prolongs the effect of transcranial direct current stimulation on corticospinal tract excitability.
    Kaneko F; Shibata E; Hayami T; Nagahata K; Aoyama T
    J Neuroeng Rehabil; 2016 Apr; 13():36. PubMed ID: 27079199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversal of Practice-related Effects on Corticospinal Excitability has no Immediate Effect on Behavioral Outcome.
    Bologna M; Rocchi L; Paparella G; Nardella A; Li Voti P; Conte A; Kojovic M; Rothwell JC; Berardelli A
    Brain Stimul; 2015; 8(3):603-12. PubMed ID: 25697591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in corticospinal excitability during motor imagery by physical practice of a force production task: Effect of the rate of force development during practice.
    Kitamura M; Kamibayashi K
    Neuropsychologia; 2024 Aug; 201():108937. PubMed ID: 38866222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor imagery and electrical stimulation reproduce corticospinal excitability at levels similar to voluntary muscle contraction.
    Kaneko F; Hayami T; Aoyama T; Kizuka T
    J Neuroeng Rehabil; 2014 Jun; 11():94. PubMed ID: 24902891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the effects of transcranial random noise stimulation and transcranial direct current stimulation on motor cortical excitability.
    Ho KA; Taylor JL; Loo CK
    J ECT; 2015 Mar; 31(1):67-72. PubMed ID: 25010032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metaplastic neuromodulation via transcranial direct current stimulation has no effect on corticospinal excitability and neuromuscular fatigue.
    Boda MR; Otieno LA; Smith AE; Goldsworthy MR; Sidhu SK
    Exp Brain Res; 2024 Aug; 242(8):1999-2012. PubMed ID: 38940961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of tRNS and 140 Hz tACS on motor cortex excitability seemingly dependent on sensitivity to sham stimulation.
    Kortuem V; Kadish NE; Siniatchkin M; Moliadze V
    Exp Brain Res; 2019 Nov; 237(11):2885-2895. PubMed ID: 31482197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voluntary movement reverses the effect of cathodal transcranial direct current stimulation (tDCS) on corticomotor excitability.
    Ataoglu EE; Caglayan HB; Cengiz B
    Exp Brain Res; 2017 Sep; 235(9):2653-2659. PubMed ID: 28577024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time course of changes in corticospinal excitability induced by motor imagery during action observation combined with peripheral nerve electrical stimulation.
    Yasui T; Yamaguchi T; Tanabe S; Tatemoto T; Takahashi Y; Kondo K; Kawakami M
    Exp Brain Res; 2019 Mar; 237(3):637-645. PubMed ID: 30536148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facilitation of corticospinal excitability by virtual reality exercise following anodal transcranial direct current stimulation in healthy volunteers and subacute stroke subjects.
    Kim YJ; Ku J; Cho S; Kim HJ; Cho YK; Lim T; Kang YJ
    J Neuroeng Rehabil; 2014 Aug; 11():124. PubMed ID: 25135003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability.
    Moret B; Donato R; Nucci M; Cona G; Campana G
    Sci Rep; 2019 Oct; 9(1):15150. PubMed ID: 31641235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.