These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34302931)

  • 41. "Metabolic burden" explained: stress symptoms and its related responses induced by (over)expression of (heterologous) proteins in Escherichia coli.
    Snoeck S; Guidi C; De Mey M
    Microb Cell Fact; 2024 Mar; 23(1):96. PubMed ID: 38555441
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An Engineering Approach for Rewiring Microbial Metabolism.
    Wenk S; Yishai O; Lindner SN; Bar-Even A
    Methods Enzymol; 2018; 608():329-367. PubMed ID: 30173769
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of L-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst.
    Hou Y; Hossain GS; Li J; Shin HD; Du G; Liu L
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2183-91. PubMed ID: 26552798
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Systems biology based metabolic engineering for non-natural chemicals.
    Biz A; Proulx S; Xu Z; Siddartha K; Mulet Indrayanti A; Mahadevan R
    Biotechnol Adv; 2019 Nov; 37(6):107379. PubMed ID: 30953683
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessing Escherichia coli metabolism models and simulation approaches in phenotype predictions: Validation against experimental data.
    Costa RS; Vinga S
    Biotechnol Prog; 2018 Nov; 34(6):1344-1354. PubMed ID: 30294889
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli.
    Harder BJ; Bettenbrock K; Klamt S
    Metab Eng; 2016 Nov; 38():29-37. PubMed ID: 27269589
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An integrated biotechnology platform for developing sustainable chemical processes.
    Barton NR; Burgard AP; Burk MJ; Crater JS; Osterhout RE; Pharkya P; Steer BA; Sun J; Trawick JD; Van Dien SJ; Yang TH; Yim H
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):349-60. PubMed ID: 25416472
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polysialic acid biosynthesis and production in Escherichia coli: current state and perspectives.
    Lin BX; Qiao Y; Shi B; Tao Y
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):1-8. PubMed ID: 26476642
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Post-translational Metabolic Switch Enables Complete Decoupling of Bacterial Growth from Biopolymer Production in Engineered Escherichia coli.
    Durante-Rodríguez G; de Lorenzo V; Nikel PI
    ACS Synth Biol; 2018 Nov; 7(11):2686-2697. PubMed ID: 30346720
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli.
    Xu P; Vansiri A; Bhan N; Koffas MA
    ACS Synth Biol; 2012 Jul; 1(7):256-66. PubMed ID: 23651248
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic models of metabolism that consider alternative steady-state solutions of intracellular fluxes and concentrations.
    Hameri T; Fengos G; Ataman M; Miskovic L; Hatzimanikatis V
    Metab Eng; 2019 Mar; 52():29-41. PubMed ID: 30455161
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering an Escherichia coli based in vivo mRNA manufacturing platform.
    Curry E; Muir G; Qu J; Kis Z; Hulley M; Brown A
    Biotechnol Bioeng; 2024 Jun; 121(6):1912-1926. PubMed ID: 38419526
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering dynamic pathway regulation using stress-response promoters.
    Dahl RH; Zhang F; Alonso-Gutierrez J; Baidoo E; Batth TS; Redding-Johanson AM; Petzold CJ; Mukhopadhyay A; Lee TS; Adams PD; Keasling JD
    Nat Biotechnol; 2013 Nov; 31(11):1039-46. PubMed ID: 24142050
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic metabolic control: towards precision engineering of metabolism.
    Liu D; Mannan AA; Han Y; Oyarzún DA; Zhang F
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):535-543. PubMed ID: 29380150
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mass spectrometry-based workflow for accurate quantification of Escherichia coli enzymes: how proteomics can play a key role in metabolic engineering.
    Trauchessec M; Jaquinod M; Bonvalot A; Brun V; Bruley C; Ropers D; de Jong H; Garin J; Bestel-Corre G; Ferro M
    Mol Cell Proteomics; 2014 Apr; 13(4):954-68. PubMed ID: 24482123
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Layered dynamic regulation for improving metabolic pathway productivity in
    Doong SJ; Gupta A; Prather KLJ
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):2964-2969. PubMed ID: 29507236
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering Escherichia coli Cell Factories for n-Butanol Production.
    Dong H; Zhao C; Zhang T; Lin Z; Li Y; Zhang Y
    Adv Biochem Eng Biotechnol; 2016; 155():141-63. PubMed ID: 25662903
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis.
    Chandrasekaran S; Price ND
    Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17845-50. PubMed ID: 20876091
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.
    Yen JY; Nazem-Bokaee H; Freedman BG; Athamneh AI; Senger RS
    Biotechnol J; 2013 May; 8(5):581-94. PubMed ID: 23460591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.