These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34302931)

  • 61. Refactoring transcription factors for metabolic engineering.
    Deng C; Wu Y; Lv X; Li J; Liu Y; Du G; Chen J; Liu L
    Biotechnol Adv; 2022; 57():107935. PubMed ID: 35271945
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Protein design in systems metabolic engineering for industrial strain development.
    Chen Z; Zeng AP
    Biotechnol J; 2013 May; 8(5):523-33. PubMed ID: 23589416
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Engineering Robustness of Microbial Cell Factories.
    Gong Z; Nielsen J; Zhou YJ
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28857502
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Microbial Upgrading of Acetate into Value-Added Products-Examining Microbial Diversity, Bioenergetic Constraints and Metabolic Engineering Approaches.
    Kutscha R; Pflügl S
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33233586
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs.
    Stimple SD; Lahiry A; Taris JE; Wood DW; Lease RA
    Methods Mol Biol; 2018; 1737():373-391. PubMed ID: 29484604
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Synergistic Regulation of Transcription and Translation in Escherichia coli Revealed by Codirectional Increases in mRNA Concentration and Translation Efficiency.
    Nguyen HL; Duviau MP; Laguerre S; Nouaille S; Cocaign-Bousquet M; Girbal L
    Microbiol Spectr; 2022 Feb; 10(1):e0204121. PubMed ID: 35138139
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins.
    Valgepea K; Adamberg K; Seiman A; Vilu R
    Mol Biosyst; 2013 Sep; 9(9):2344-58. PubMed ID: 23824091
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Retargeting a Dual-Acting sRNA for Multiple mRNA Transcript Regulation.
    Lahiry A; Stimple SD; Wood DW; Lease RA
    ACS Synth Biol; 2017 Apr; 6(4):648-658. PubMed ID: 28067500
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dynamic interactions between the RNA chaperone Hfq, small regulatory RNAs, and mRNAs in live bacterial cells.
    Park S; Prévost K; Heideman EM; Carrier MC; Azam MS; Reyer MA; Liu W; Massé E; Fei J
    Elife; 2021 Feb; 10():. PubMed ID: 33616037
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Development of an autonomous and bifunctional quorum-sensing circuit for metabolic flux control in engineered
    Dinh CV; Prather KLJ
    Proc Natl Acad Sci U S A; 2019 Dec; 116(51):25562-25568. PubMed ID: 31796590
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [An evolving and flourishing metabolic engineering].
    Liu Z; Wang Y
    Sheng Wu Gong Cheng Xue Bao; 2021 May; 37(5):1494-1509. PubMed ID: 34085439
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands.
    Kuhn D; Fritzsch FS; Zhang X; Wendisch VF; Blank LM; Bühler B; Schmid A
    J Biotechnol; 2013 Jan; 163(2):194-203. PubMed ID: 22922011
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Use of CellNetAnalyzer in biotechnology and metabolic engineering.
    von Kamp A; Thiele S; Hädicke O; Klamt S
    J Biotechnol; 2017 Nov; 261():221-228. PubMed ID: 28499817
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Metabolite Sequestration Enables Rapid Recovery from Fatty Acid Depletion in Escherichia coli.
    Hartline CJ; Mannan AA; Liu D; Zhang F; Oyarzún DA
    mBio; 2020 Mar; 11(2):. PubMed ID: 32184249
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Microbial acetyl-CoA metabolism and metabolic engineering.
    Krivoruchko A; Zhang Y; Siewers V; Chen Y; Nielsen J
    Metab Eng; 2015 Mar; 28():28-42. PubMed ID: 25485951
    [TBL] [Abstract][Full Text] [Related]  

  • 77. From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks.
    Soh KC; Miskovic L; Hatzimanikatis V
    FEMS Yeast Res; 2012 Mar; 12(2):129-43. PubMed ID: 22129227
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli.
    Silva F; Queiroz JA; Domingues FC
    Biotechnol Adv; 2012; 30(3):691-708. PubMed ID: 22244816
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A metabolite-centric view on flux distributions in genome-scale metabolic models.
    Riemer SA; Rex R; Schomburg D
    BMC Syst Biol; 2013 Apr; 7():33. PubMed ID: 23587327
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Systems-level characterization and engineering of oxidative stress tolerance in Escherichia coli under anaerobic conditions.
    Kang A; Tan MH; Ling H; Chang MW
    Mol Biosyst; 2013 Feb; 9(2):285-95. PubMed ID: 23224080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.