These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34302931)

  • 81. Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology.
    Clomburg JM; Gonzalez R
    Appl Microbiol Biotechnol; 2010 Mar; 86(2):419-34. PubMed ID: 20143230
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering.
    Choi KR; Jang WD; Yang D; Cho JS; Park D; Lee SY
    Trends Biotechnol; 2019 Aug; 37(8):817-837. PubMed ID: 30737009
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Quorum Sensing System Used as a Tool in Metabolic Engineering.
    Ge C; Sheng H; Chen X; Shen X; Sun X; Yan Y; Wang J; Yuan Q
    Biotechnol J; 2020 Jun; 15(6):e1900360. PubMed ID: 32034863
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli.
    McKee AE; Rutherford BJ; Chivian DC; Baidoo EK; Juminaga D; Kuo D; Benke PI; Dietrich JA; Ma SM; Arkin AP; Petzold CJ; Adams PD; Keasling JD; Chhabra SR
    Microb Cell Fact; 2012 Jun; 11():79. PubMed ID: 22694848
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Metabolic systems biology and multi-omics of cyanobacteria: Perspectives and future directions.
    Pathania R; Srivastava A; Srivastava S; Shukla P
    Bioresour Technol; 2022 Jan; 343():126007. PubMed ID: 34634665
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering.
    Sharma A; Gupta G; Ahmad T; Kaur B; Hakeem KR
    J Microbiol Methods; 2020 Mar; 170():105862. PubMed ID: 32032637
    [TBL] [Abstract][Full Text] [Related]  

  • 87. [Application of chronological lifespan in the construction of Escherichia coli cell factories].
    Liu J; Guo L; Luo Q; Chen X; Gao C; Song W; Liu L
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1277-1286. PubMed ID: 33973441
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Computer-aided design for metabolic engineering.
    Fernández-Castané A; Fehér T; Carbonell P; Pauthenier C; Faulon JL
    J Biotechnol; 2014 Dec; 192 Pt B():302-13. PubMed ID: 24704607
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development.
    Paddon CJ; Keasling JD
    Nat Rev Microbiol; 2014 May; 12(5):355-67. PubMed ID: 24686413
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production.
    Ko YS; Kim JW; Lee JA; Han T; Kim GB; Park JE; Lee SY
    Chem Soc Rev; 2020 Jul; 49(14):4615-4636. PubMed ID: 32567619
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Improving the production of NAD
    Yang L; Mu X; Nie Y; Xu Y
    Metab Eng; 2021 Mar; 64():122-133. PubMed ID: 33577950
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Metabolic pathway engineering: Perspectives and applications.
    Dasgupta A; Chowdhury N; De RK
    Comput Methods Programs Biomed; 2020 Aug; 192():105436. PubMed ID: 32199314
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Transcriptional regulatory proteins in central carbon metabolism of Pichia pastoris and Saccharomyces cerevisiae.
    Kalender Ö; Çalık P
    Appl Microbiol Biotechnol; 2020 Sep; 104(17):7273-7311. PubMed ID: 32651601
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Prospects for engineering dynamic CRISPR-Cas transcriptional circuits to improve bioproduction.
    Fontana J; Voje WE; Zalatan JG; Carothers JM
    J Ind Microbiol Biotechnol; 2018 Jul; 45(7):481-490. PubMed ID: 29740742
    [TBL] [Abstract][Full Text] [Related]  

  • 95. [Genome minimization method based on metabolic network analysis and its application to Escherichia coli].
    Tang B; Hao T; Yuan Q; Chen T; Ma H
    Sheng Wu Gong Cheng Xue Bao; 2013 Aug; 29(8):1173-84. PubMed ID: 24364353
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Coping with complexity in metabolic engineering.
    Mampel J; Buescher JM; Meurer G; Eck J
    Trends Biotechnol; 2013 Jan; 31(1):52-60. PubMed ID: 23183303
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach.
    Liu Z; Zhang X; Lei D; Qiao B; Zhao GR
    Microb Cell Fact; 2021 Jun; 20(1):121. PubMed ID: 34176467
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The crosstalk between metabolism and translation.
    Biffo S; Ruggero D; Santoro MM
    Cell Metab; 2024 Sep; 36(9):1945-1962. PubMed ID: 39232280
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A SsrA/NIa-based Strategy for Post-Translational Regulation of Protein Levels in Gram-negative Bacteria.
    Durante-Rodríguez G; Calles B; De Lorenzo V; Nikel PI
    Bio Protoc; 2020 Jul; 10(14):e3688. PubMed ID: 33659358
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Bioprocess systems engineering: transferring traditional process engineering principles to industrial biotechnology.
    Koutinas M; Kiparissides A; Pistikopoulos EN; Mantalaris A
    Comput Struct Biotechnol J; 2012; 3():e201210022. PubMed ID: 24688682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.