These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 34303015)
1. Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response. Monteiro CF; Custódio CA; Mano JF Acta Biomater; 2021 Oct; 134():204-214. PubMed ID: 34303015 [TBL] [Abstract][Full Text] [Related]
2. Human Platelet Lysates-Based Hydrogels: A Novel Personalized 3D Platform for Spheroid Invasion Assessment. Monteiro CF; Santos SC; Custódio CA; Mano JF Adv Sci (Weinh); 2020 Apr; 7(7):1902398. PubMed ID: 32274296 [TBL] [Abstract][Full Text] [Related]
3. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118 [TBL] [Abstract][Full Text] [Related]
4. Mechanical Property of Hydrogels and the Presence of Adipose Stem Cells in Tumor Stroma Affect Spheroid Formation in the 3D Osteosarcoma Model. Kundu B; Bastos ARF; Brancato V; Cerqueira MT; Oliveira JM; Correlo VM; Reis RL; Kundu SC ACS Appl Mater Interfaces; 2019 Apr; 11(16):14548-14559. PubMed ID: 30943004 [TBL] [Abstract][Full Text] [Related]
5. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response. Monteiro MV; Gaspar VM; Ferreira LP; Mano JF Biomater Sci; 2020 Mar; 8(7):1855-1864. PubMed ID: 32091033 [TBL] [Abstract][Full Text] [Related]
6. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels. Bruns J; Egan T; Mercier P; Zustiak SP Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918 [TBL] [Abstract][Full Text] [Related]
7. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion. Liu C; Lewin Mejia D; Chiang B; Luker KE; Luker GD Acta Biomater; 2018 Jul; 75():213-225. PubMed ID: 29879553 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formation. Vainieri ML; Lolli A; Kops N; D'Atri D; Eglin D; Yayon A; Alini M; Grad S; Sivasubramaniyan K; van Osch GJVM Acta Biomater; 2020 Jan; 101():293-303. PubMed ID: 31726249 [TBL] [Abstract][Full Text] [Related]
9. Stratified 3D Microtumors as Organotypic Testing Platforms for Screening Pancreatic Cancer Therapies. Monteiro MV; Gaspar VM; Mendes L; Duarte IF; Mano JF Small Methods; 2021 May; 5(5):e2001207. PubMed ID: 34928079 [TBL] [Abstract][Full Text] [Related]
10. Bioinstructive microparticles for self-assembly of mesenchymal stem Cell-3D tumor spheroids. Ferreira LP; Gaspar VM; Mano JF Biomaterials; 2018 Dec; 185():155-173. PubMed ID: 30245385 [TBL] [Abstract][Full Text] [Related]
11. 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance. Hong S; Song JM Acta Biomater; 2022 Jan; 138():228-239. PubMed ID: 34718182 [TBL] [Abstract][Full Text] [Related]
12. Generation of 3D melanoma models using an assembloid-based approach. Rodrigues DB; Moreira HR; Jarnalo M; Horta R; Marques AP; Reis RL; Pirraco RP Acta Biomater; 2024 Apr; 178():93-110. PubMed ID: 38382833 [TBL] [Abstract][Full Text] [Related]
13. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Heo DN; Hospodiuk M; Ozbolat IT Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326 [TBL] [Abstract][Full Text] [Related]
14. Photopolymerizable Platelet Lysate Hydrogels for Customizable 3D Cell Culture Platforms. Santos SC; Custódio CA; Mano JF Adv Healthc Mater; 2018 Dec; 7(23):e1800849. PubMed ID: 30387328 [TBL] [Abstract][Full Text] [Related]
15. A Novel Stromal Fibroblast-Modulated 3D Tumor Spheroid Model for Studying Tumor-Stroma Interaction and Drug Discovery. Shao H; Moller M; Wang D; Ting A; Boulina M; Liu ZJ J Vis Exp; 2020 Feb; (156):. PubMed ID: 32176195 [TBL] [Abstract][Full Text] [Related]
16. Modeling 3D Tumor Invasiveness to Modulate Macrophage Phenotype in a Human-Based Hydrogel Platform. Monteiro CF; Almeida CR; Custódio CA; Mano JF Macromol Biosci; 2024 Nov; 24(11):e2400227. PubMed ID: 38940700 [TBL] [Abstract][Full Text] [Related]
17. Amyloid fibril-based thixotropic hydrogels for modeling of tumor spheroids in vitro. Singh N; Patel K; Navalkar A; Kadu P; Datta D; Chatterjee D; Mukherjee S; Shaw R; Gahlot N; Shaw A; Jadhav S; Maji SK Biomaterials; 2023 Apr; 295():122032. PubMed ID: 36791521 [TBL] [Abstract][Full Text] [Related]
18. Mesenchymal stromal cells mediated delivery of photoactive nanoparticles inhibits osteosarcoma growth in vitro and in a murine in vivo ectopic model. Lenna S; Bellotti C; Duchi S; Martella E; Columbaro M; Dozza B; Ballestri M; Guerrini A; Sotgiu G; Frisoni T; Cevolani L; Varchi G; Ferrari M; Donati DM; Lucarelli E J Exp Clin Cancer Res; 2020 Feb; 39(1):40. PubMed ID: 32087737 [TBL] [Abstract][Full Text] [Related]
19. Osteomimetic matrix components alter cell migration and drug response in a 3D tumour-engineered osteosarcoma model. Pavlou M; Shah M; Gikas P; Briggs T; Roberts SJ; Cheema U Acta Biomater; 2019 Sep; 96():247-257. PubMed ID: 31302294 [TBL] [Abstract][Full Text] [Related]
20. 3D extracellular matrix interactions modulate tumour cell growth, invasion and angiogenesis in engineered tumour microenvironments. Taubenberger AV; Bray LJ; Haller B; Shaposhnykov A; Binner M; Freudenberg U; Guck J; Werner C Acta Biomater; 2016 May; 36():73-85. PubMed ID: 26971667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]