These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 34303078)

  • 1. Recent advances in single-cell epigenomics.
    Harada A; Kimura H; Ohkawa Y
    Curr Opin Struct Biol; 2021 Dec; 71():116-122. PubMed ID: 34303078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepHistone: a deep learning approach to predicting histone modifications.
    Yin Q; Wu M; Liu Q; Lv H; Jiang R
    BMC Genomics; 2019 Apr; 20(Suppl 2):193. PubMed ID: 30967126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenomics: Technologies and Applications.
    Wang KC; Chang HY
    Circ Res; 2018 Apr; 122(9):1191-1199. PubMed ID: 29700067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NUCLIZE for quantifying epigenome: generating histone modification data at single-nucleosome resolution using genuine nucleosome positions.
    Zheng D; Trynda J; Sun Z; Li Z
    BMC Genomics; 2019 Jul; 20(1):541. PubMed ID: 31266464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial epigenome-transcriptome co-profiling of mammalian tissues.
    Zhang D; Deng Y; Kukanja P; Agirre E; Bartosovic M; Dong M; Ma C; Ma S; Su G; Bao S; Liu Y; Xiao Y; Rosoklija GB; Dwork AJ; Mann JJ; Leong KW; Boldrini M; Wang L; Haeussler M; Raphael BJ; Kluger Y; Castelo-Branco G; Fan R
    Nature; 2023 Apr; 616(7955):113-122. PubMed ID: 36922587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin integration labeling for mapping DNA-binding proteins and modifications with low input.
    Handa T; Harada A; Maehara K; Sato S; Nakao M; Goto N; Kurumizaka H; Ohkawa Y; Kimura H
    Nat Protoc; 2020 Oct; 15(10):3334-3360. PubMed ID: 32807906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin Profiling Techniques: Exploring the Chromatin Environment and Its Contributions to Complex Traits.
    Chawla A; Nagy C; Turecki G
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenomes of Human Hearts Reveal New Genetic Variants Relevant for Cardiac Disease and Phenotype.
    Tan WLW; Anene-Nzelu CG; Wong E; Lee CJM; Tan HS; Tang SJ; Perrin A; Wu KX; Zheng W; Ashburn RJ; Pan B; Lee MY; Autio MI; Morley MP; Tam WL; Cheung C; Margulies KB; Chen L; Cappola TP; Loh M; Chambers J; Prabhakar S; Foo RSY;
    Circ Res; 2020 Aug; 127(6):761-777. PubMed ID: 32529949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone modifications for human epigenome analysis.
    Kimura H
    J Hum Genet; 2013 Jul; 58(7):439-45. PubMed ID: 23739122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone ChIP-Seq identifies differential enhancer usage during chondrogenesis as critical for defining cell-type specificity.
    Cheung K; Barter MJ; Falk J; Proctor CJ; Reynard LN; Young DA
    FASEB J; 2020 Apr; 34(4):5317-5331. PubMed ID: 32058623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Techniques to study epigenetic control and the epigenome in parasites.
    Nardelli SC; Ting LM; Kim K
    Methods Mol Biol; 2015; 1201():177-91. PubMed ID: 25388114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A guide to visualizing the spatial epigenome with super-resolution microscopy.
    Xu J; Liu Y
    FEBS J; 2019 Aug; 286(16):3095-3109. PubMed ID: 31127980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunostaining of modified histones defines high-level features of the human metaphase epigenome.
    Terrenoire E; McRonald F; Halsall JA; Page P; Illingworth RS; Taylor AM; Davison V; O'Neill LP; Turner BM
    Genome Biol; 2010; 11(11):R110. PubMed ID: 21078160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation.
    Henikoff S; Henikoff JG; Kaya-Okur HS; Ahmad K
    Elife; 2020 Nov; 9():. PubMed ID: 33191916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactive analysis of single-cell epigenomic landscapes with ChromSCape.
    Prompsy P; Kirchmeier P; Marsolier J; Deloger M; Servant N; Vallot C
    Nat Commun; 2020 Nov; 11(1):5702. PubMed ID: 33177523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for ChIP-seq analysis: A practical workflow and advanced applications.
    Nakato R; Sakata T
    Methods; 2021 Mar; 187():44-53. PubMed ID: 32240773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using native chromatin immunoprecipitation to interrogate histone variant protein deposition in embryonic stem cells.
    Tseng Z; Wu T; Liu Y; Zhong M; Xiao A
    Methods Mol Biol; 2014; 1176():11-22. PubMed ID: 25030915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Chromatin and Polycomb: Biology and bioinformatics].
    Kudrin RA; Mironov AA; Stavrovskaya ED
    Mol Biol (Mosk); 2017; 51(1):18-30. PubMed ID: 28251962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenomics: the science of no-longer-junk DNA. Why study it in chronic kidney disease?
    Ko YA; Susztak K
    Semin Nephrol; 2013 Jul; 33(4):354-62. PubMed ID: 24011577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin Immunoprecipitation to Study The Plant Epigenome.
    Xie Z; Presting G
    Methods Mol Biol; 2016; 1429():189-96. PubMed ID: 27511176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.