BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34303360)

  • 1. A neural network-based method for polypharmacy side effects prediction.
    Masumshah R; Aghdam R; Eslahchi C
    BMC Bioinformatics; 2021 Jul; 22(1):385. PubMed ID: 34303360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DPSP: a multimodal deep learning framework for polypharmacy side effects prediction.
    Masumshah R; Eslahchi C
    Bioinform Adv; 2023; 3(1):vbad110. PubMed ID: 37701676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling polypharmacy side effects with graph convolutional networks.
    Zitnik M; Agrawal M; Leskovec J
    Bioinformatics; 2018 Jul; 34(13):i457-i466. PubMed ID: 29949996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepPSE: Prediction of polypharmacy side effects by fusing deep representation of drug pairs and attention mechanism.
    Lin S; Zhang G; Wei DQ; Xiong Y
    Comput Biol Med; 2022 Oct; 149():105984. PubMed ID: 35994933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polypharmacy side-effect prediction with enhanced interpretability based on graph feature attention network.
    Bang S; Jhee JH; Shin H
    Bioinformatics; 2021 Sep; 37(18):2955-2962. PubMed ID: 33714994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of polypharmacy side effects by integrating multiple data sources and convolutional neural networks.
    Lakizadeh A; Babaei M
    Mol Divers; 2022 Dec; 26(6):3193-3203. PubMed ID: 35072838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction.
    Yao J; Sun W; Jian Z; Wu Q; Wang X
    Bioinformatics; 2022 Apr; 38(8):2315-2322. PubMed ID: 35176135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Polypharmacy Side-effects Using Knowledge Graph Embeddings.
    Nováček V; Mohamed SK
    AMIA Jt Summits Transl Sci Proc; 2020; 2020():449-458. PubMed ID: 32477666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Drug-Side Effect Context-Sensitive Network approach for drug target prediction.
    Zhou M; Chen Y; Xu R
    Bioinformatics; 2019 Jun; 35(12):2100-2107. PubMed ID: 30428013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel graph attention model for predicting frequencies of drug-side effects from multi-view data.
    Zhao H; Zheng K; Li Y; Wang J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34213525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MDF-SA-DDI: predicting drug-drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism.
    Lin S; Wang Y; Zhang L; Chu Y; Liu Y; Fang Y; Jiang M; Wang Q; Zhao B; Xiong Y; Wei DQ
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34671814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CNN-Siam: multimodal siamese CNN-based deep learning approach for drug‒drug interaction prediction.
    Yang Z; Tong K; Jin S; Wang S; Yang C; Jiang F
    BMC Bioinformatics; 2023 Mar; 24(1):110. PubMed ID: 36959539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network.
    Zhou D; Xu Z; Li W; Xie X; Peng S
    Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug-Drug Interaction Predicting by Neural Network Using Integrated Similarity.
    Rohani N; Eslahchi C
    Sci Rep; 2019 Sep; 9(1):13645. PubMed ID: 31541145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-type feature fusion based on graph neural network for drug-drug interaction prediction.
    He C; Liu Y; Li H; Zhang H; Mao Y; Qin X; Liu L; Zhang X
    BMC Bioinformatics; 2022 Jun; 23(1):224. PubMed ID: 35689200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting Adverse Drug-Drug Interactions with Neural Embedding of Semantic Predications.
    Burkhardt HA; Subramanian D; Mower J; Cohen T
    AMIA Annu Symp Proc; 2019; 2019():992-1001. PubMed ID: 32308896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development of a scoring and ranking strategy for a patient-tailored adverse drug reaction prediction in polypharmacy.
    Valeanu A; Damian C; Marineci CD; Negres S
    Sci Rep; 2020 Jun; 10(1):9552. PubMed ID: 32533040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BiMPADR: A Deep Learning Framework for Predicting Adverse Drug Reactions in New Drugs.
    Li S; Zhang L; Wang L; Ji J; He J; Zheng X; Cao L; Li K
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.