These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3430338)

  • 1. Phenol hydroxylase from Rhodococcus sp. P 1.
    Straube G
    J Basic Microbiol; 1987; 27(4):229-32. PubMed ID: 3430338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of yeast (Candida maltosa) and bacterial (Rhodococcus erythropolis) phenol hydroxylase activity and its properties in the phenolic compounds biodegradation.
    Fialová A; Cejková A; Masák J; Jirků V
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):155-8. PubMed ID: 15296151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferential oxidative dehalogenation upon conversion of 2-halophenols by Rhodococcus opacus 1G.
    Bondar VS; Boersma MG; van Berkel WJ; Finkelstein ZI; Golovlev EL; Baskunov BP; Vervoort J; Golovleva LA; Rietjens IM
    FEMS Microbiol Lett; 1999 Dec; 181(1):73-82. PubMed ID: 10564791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of phenolic compounds by the yeast Candida tropicalis HP 15. II. Some properties of the first two enzymes of the degradation pathway.
    Krug M; Straube G
    J Basic Microbiol; 1986; 26(5):271-81. PubMed ID: 3783431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of a novel Rhodococcus strain with switchable carbonyl reductase and para-acetylphenol hydroxylase activities.
    Zhang R; Ren J; Wang Y; Wu Q; Wang M; Zhu D
    J Ind Microbiol Biotechnol; 2013 Jan; 40(1):11-20. PubMed ID: 23014895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbiological transformation of benzene into phenol by cultured Rhodococcus erythropolis 3/89 cells.
    Bezborodov AM; Kulikova AK
    Dokl Biol Sci; 2001; 378():299-301. PubMed ID: 12918356
    [No Abstract]   [Full Text] [Related]  

  • 7. Isolation and characterization of a phenol-degrading Rhodococcus sp. strain AQ5NOL 2 KCTC 11961BP.
    Arif NM; Ahmad SA; Syed MA; Shukor MY
    J Basic Microbiol; 2013 Jan; 53(1):9-19. PubMed ID: 22581645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Assimilation of propane and properties of propan monooxygenase from Rhodococcus erythropolis 3/89].
    Kulikova AK; Bezborodov AM
    Prikl Biokhim Mikrobiol; 2001; 37(2):186-9. PubMed ID: 11357423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and partial characterization of the extradiol dioxygenase, 2'-carboxy-2,3-dihydroxybiphenyl 1,2-dioxygenase, in the fluorene degradation pathway from Rhodococcus sp. strain DFA3.
    Kotake T; Matsuzawa J; Suzuki-Minakuchi C; Okada K; Nojiri H; Iwata K
    Biosci Biotechnol Biochem; 2016; 80(4):719-25. PubMed ID: 26796429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxylation of o-halogenophenol and o-nitrophenol by salicylate hydroxylase.
    Suzuki K; Gomi T; Kaidoh T; Itagaki E
    J Biochem; 1991 Feb; 109(2):348-53. PubMed ID: 1864847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Monochlorophenols as enzyme substrates for the preparatory metabolism of phenol in Candida tropicalis yeasts].
    Ivoĭlov VS; Karasevich IuN
    Mikrobiologiia; 1983; 52(6):956-61. PubMed ID: 6669081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation enthalpies and pH dependence of phenol hydroxylase from Trichosporon cutaneum, in vitro and in situ.
    Mörtberg M; Neujahr HY
    FEBS Lett; 1988 Dec; 242(1):75-8. PubMed ID: 3203745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Promiscuity of Phenol Hydroxylase from Pseudomonas stutzeri OX1 for the Biosynthesis of Phenolic Compounds.
    Wang J; Shen X; Wang J; Yang Y; Yuan Q; Yan Y
    ACS Synth Biol; 2018 May; 7(5):1238-1243. PubMed ID: 29659242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocatalytic Properties and Structural Analysis of Eugenol Oxidase from Rhodococcus jostii RHA1: A Versatile Oxidative Biocatalyst.
    Nguyen QT; de Gonzalo G; Binda C; Rioz-Martínez A; Mattevi A; Fraaije MW
    Chembiochem; 2016 Jul; 17(14):1359-66. PubMed ID: 27123962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene redundancy of two-component (chloro)phenol hydroxylases in Rhodococcus opacus 1CP.
    Gröning JA; Eulberg D; Tischler D; Kaschabek SR; Schlömann M
    FEMS Microbiol Lett; 2014 Dec; 361(1):68-75. PubMed ID: 25283988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii.
    Szőköl J; Rucká L; Šimčíková M; Halada P; Nešvera J; Pátek M
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8267-79. PubMed ID: 24938209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of various phenolic compounds on phenol hydroxylase activity of a Trichosporon cutaneum strain.
    Gerginova M; Manasiev J; Shivarova N; Alexieva Z
    Z Naturforsch C J Biosci; 2007; 62(1-2):83-6. PubMed ID: 17425111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenol degradation by Acinetobacter calcoaceticus NCIB 8250.
    Paller G; Hommel RK; Kleber HP
    J Basic Microbiol; 1995; 35(5):325-35. PubMed ID: 8568644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. Strain PN1: characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression.
    Takeo M; Murakami M; Niihara S; Yamamoto K; Nishimura M; Kato D; Negoro S
    J Bacteriol; 2008 Nov; 190(22):7367-74. PubMed ID: 18805976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Proteomic Analysis of Propane Metabolism in Mycobacterium sp. Strain ENV421 and Rhodococcus sp. Strain ENV425.
    Tupa PR; Masuda H
    J Mol Microbiol Biotechnol; 2018; 28(3):107-115. PubMed ID: 30153684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.