These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 34303495)
1. A comparative analysis of freeway crash incident clearance time using random parameter and latent class hazard-based duration model. Islam N; Adanu EK; Hainen AM; Burdette S; Smith R; Jones S Accid Anal Prev; 2021 Sep; 160():106303. PubMed ID: 34303495 [TBL] [Abstract][Full Text] [Related]
2. Study on ring-road incident duration based on latent class accelerated hazard model. Shen Q; Xie X; Li G; Wu L; Zhao L; Yang Z PLoS One; 2024; 19(8):e0308473. PubMed ID: 39133728 [TBL] [Abstract][Full Text] [Related]
3. Optimizing crash risk models for freeway segments: A focus on the heterogeneous effects of road geometric design features, traffic operation status, and crash units. Li J; Li C; Zhao X Accid Anal Prev; 2024 Sep; 205():107665. PubMed ID: 38901161 [TBL] [Abstract][Full Text] [Related]
4. Hazard based models for freeway traffic incident duration. Tavassoli Hojati A; Ferreira L; Washington S; Charles P Accid Anal Prev; 2013 Mar; 52():171-81. PubMed ID: 23333698 [TBL] [Abstract][Full Text] [Related]
5. Investigating factors of crash frequency with random effects and random parameters models: New insights from Chinese freeway study. Hou Q; Tarko AP; Meng X Accid Anal Prev; 2018 Nov; 120():1-12. PubMed ID: 30075358 [TBL] [Abstract][Full Text] [Related]
6. Estimating mountainous freeway crash rate: Application of a spatial model with three-dimensional (3D) alignment parameters. Wang J; He S; Zhai X; Wang Z; Fu X Accid Anal Prev; 2022 Jun; 170():106634. PubMed ID: 35344798 [TBL] [Abstract][Full Text] [Related]
7. Multi-level Bayesian analyses for single- and multi-vehicle freeway crashes. Yu R; Abdel-Aty M Accid Anal Prev; 2013 Sep; 58():97-105. PubMed ID: 23727550 [TBL] [Abstract][Full Text] [Related]
8. Assessing the likelihood of secondary crashes on freeways with Adaptive Signal Control System deployed on alternate routes. Salek MS; Jin W; Khan SM; Chowdhury M; Gerard P; Basnet SB; Torkjazi M; Huynh N J Safety Res; 2021 Feb; 76():314-326. PubMed ID: 33653564 [TBL] [Abstract][Full Text] [Related]
9. Exploring factors affecting the injury severity of freeway tunnel crashes: A random parameters approach with heterogeneity in means and variances. Pervez A; Lee J; Huang H Accid Anal Prev; 2022 Dec; 178():106835. PubMed ID: 36126361 [TBL] [Abstract][Full Text] [Related]
10. Micro-level safety risk assessment model for a two-lane heterogeneous traffic environment in a developing country: A comparative crash probability modeling approach. Mahmud SMS; Ferreira L; Hoque MS; Tavassoli A J Safety Res; 2019 Jun; 69():125-134. PubMed ID: 31235224 [TBL] [Abstract][Full Text] [Related]
12. Modelling total duration of traffic incidents including incident detection and recovery time. Tavassoli Hojati A; Ferreira L; Washington S; Charles P; Shobeirinejad A Accid Anal Prev; 2014 Oct; 71():296-305. PubMed ID: 24974360 [TBL] [Abstract][Full Text] [Related]
13. A correlated random parameters tobit model to analyze the safety effects and temporal instability of factors affecting crash rates. Hou Q; Huo X; Leng J Accid Anal Prev; 2020 Jan; 134():105326. PubMed ID: 31675667 [TBL] [Abstract][Full Text] [Related]
14. Investigating the uniqueness of crash injury severity in freeway tunnels: A comparative study in Guizhou, China. Zhou Z; Meng F; Song C; Sze NN; Guo Z; Ouyang N J Safety Res; 2021 Jun; 77():105-113. PubMed ID: 34092300 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the impact of Road Rangers in preventing secondary crashes. Salum JH; Kitali AE; Sando T; Alluri P Accid Anal Prev; 2021 Jun; 156():106129. PubMed ID: 33933717 [TBL] [Abstract][Full Text] [Related]
16. Analyzing the transition from two-vehicle collisions to chain reaction crashes: A hybrid approach using random parameters logit model, interpretable machine learning, and clustering. Samerei SA; Aghabayk K Accid Anal Prev; 2024 Jul; 202():107603. PubMed ID: 38701559 [TBL] [Abstract][Full Text] [Related]
17. A combined M5P tree and hazard-based duration model for predicting urban freeway traffic accident durations. Lin L; Wang Q; Sadek AW Accid Anal Prev; 2016 Jun; 91():114-26. PubMed ID: 26974028 [TBL] [Abstract][Full Text] [Related]
18. Impact of traffic states on freeway crash involvement rates. Yeo H; Jang K; Skabardonis A; Kang S Accid Anal Prev; 2013 Jan; 50():713-23. PubMed ID: 22795398 [TBL] [Abstract][Full Text] [Related]
19. Identifying crash-prone traffic conditions under different weather on freeways. Xu C; Wang W; Liu P J Safety Res; 2013 Sep; 46():135-44. PubMed ID: 23932695 [TBL] [Abstract][Full Text] [Related]
20. Competing risks mixture model for traffic incident duration prediction. Li R; Pereira FC; Ben-Akiva ME Accid Anal Prev; 2015 Feb; 75():192-201. PubMed ID: 25485730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]