These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34303549)

  • 61. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae.
    Li M; Borodina I
    FEMS Yeast Res; 2015 Feb; 15(1):1-12. PubMed ID: 25238571
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotes.
    Lushchak VI
    Acta Biochim Pol; 2006; 53(4):679-84. PubMed ID: 17063208
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fifteen years of large scale metabolic modeling of yeast: developments and impacts.
    Osterlund T; Nookaew I; Nielsen J
    Biotechnol Adv; 2012; 30(5):979-88. PubMed ID: 21846501
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Saccharomyces cerevisiae as a model in ecotoxicological studies: A post-genomics perspective.
    Braconi D; Bernardini G; Santucci A
    J Proteomics; 2016 Mar; 137():19-34. PubMed ID: 26365628
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Progress in metabolic engineering of Saccharomyces cerevisiae.
    Nevoigt E
    Microbiol Mol Biol Rev; 2008 Sep; 72(3):379-412. PubMed ID: 18772282
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system.
    Duina AA; Miller ME; Keeney JB
    Genetics; 2014 May; 197(1):33-48. PubMed ID: 24807111
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tackling Cancer with Yeast-Based Technologies.
    Ferreira R; Limeta A; Nielsen J
    Trends Biotechnol; 2019 Jun; 37(6):592-603. PubMed ID: 30583804
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Yeast as a platform to explore polyglutamine toxicity and aggregation.
    Duennwald ML
    Methods Mol Biol; 2013; 1017():153-61. PubMed ID: 23719914
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Interaction networks: lessons from large-scale studies in yeast.
    Cagney G
    Proteomics; 2009 Oct; 9(20):4799-811. PubMed ID: 19743423
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies.
    Lasserre JP; Dautant A; Aiyar RS; Kucharczyk R; Glatigny A; Tribouillard-Tanvier D; Rytka J; Blondel M; Skoczen N; Reynier P; Pitayu L; Rötig A; Delahodde A; Steinmetz LM; Dujardin G; Procaccio V; di Rago JP
    Dis Model Mech; 2015 Jun; 8(6):509-26. PubMed ID: 26035862
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Using yeast to model calcium-related diseases: example of the Hailey-Hailey disease.
    Voisset C; García-Rodríguez N; Birkmire A; Blondel M; Wellinger RE
    Biochim Biophys Acta; 2014 Oct; 1843(10):2315-21. PubMed ID: 24583118
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Whole-Genome Sequencing of Yeast Cells.
    Gopalakrishnan R; Winston F
    Curr Protoc Mol Biol; 2019 Sep; 128(1):e103. PubMed ID: 31503417
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A genome-wide deletion mutant screen identifies pathways affected by nickel sulfate in Saccharomyces cerevisiae.
    Arita A; Zhou X; Ellen TP; Liu X; Bai J; Rooney JP; Kurtz A; Klein CB; Dai W; Begley TJ; Costa M
    BMC Genomics; 2009 Nov; 10():524. PubMed ID: 19917080
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization of Peroxisomal Regulation Networks.
    Mast FD; Aitchison JD
    Subcell Biochem; 2018; 89():367-382. PubMed ID: 30378032
    [TBL] [Abstract][Full Text] [Related]  

  • 75. New genome-wide methods bring more power to yeast as a model organism.
    Game JC
    Trends Pharmacol Sci; 2002 Oct; 23(10):445-7. PubMed ID: 12368060
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Budding yeast as a model organism to study the effects of age.
    Denoth Lippuner A; Julou T; Barral Y
    FEMS Microbiol Rev; 2014 Mar; 38(2):300-25. PubMed ID: 24484434
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multiplex Genome Engineering Methods for Yeast Cell Factory Development.
    Malcı K; Walls LE; Rios-Solis L
    Front Bioeng Biotechnol; 2020; 8():589468. PubMed ID: 33195154
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Yeast metabolic engineering for the production of pharmaceutically important secondary metabolites.
    Rahmat E; Kang Y
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4659-4674. PubMed ID: 32270249
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A new strategy for dynamic metabolic flux estimation by integrating transient metabolome data into genome-scale metabolic models.
    Liu P; Hua Y; Zhang W; Xie T; Zhuang Y; Xia J; Noorman H
    Bioprocess Biosyst Eng; 2021 Dec; 44(12):2553-2565. PubMed ID: 34459987
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Physiological Genomics of Multistress Resistance in the Yeast Cell Model and Factory: Focus on MDR/MXR Transporters.
    Godinho CP; Sá-Correia I
    Prog Mol Subcell Biol; 2019; 58():1-35. PubMed ID: 30911887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.