These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 34303818)
1. Aqueous core microcapsules as potential long-acting release systems for hydrophilic drugs. Abuhamdan RM; Al-Anati BH; Al Thaher Y; Shraideh ZA; Alkawareek MY; Abulateefeh SR Int J Pharm; 2021 Sep; 606():120926. PubMed ID: 34303818 [TBL] [Abstract][Full Text] [Related]
2. Tunable sustained release drug delivery system based on mononuclear aqueous core-polymer shell microcapsules. Abulateefeh SR; Alkawareek MY; Alkilany AM Int J Pharm; 2019 Mar; 558():291-298. PubMed ID: 30641178 [TBL] [Abstract][Full Text] [Related]
3. Biodegradable Nanoparticles-Loaded PLGA Microcapsule for the Enhanced Encapsulation Efficiency and Controlled Release of Hydrophilic Drug. Ryu S; Park S; Lee HY; Lee H; Cho CW; Baek JS Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33801871 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and Characterization of PLGA Shell Microcapsules Containing Aqueous Cores Prepared by Internal Phase Separation. Abulateefeh SR; Alkilany AM AAPS PharmSciTech; 2016 Aug; 17(4):891-7. PubMed ID: 26416284 [TBL] [Abstract][Full Text] [Related]
5. Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications. Ma G J Control Release; 2014 Nov; 193():324-40. PubMed ID: 25218676 [TBL] [Abstract][Full Text] [Related]
6. Preparation of Aqueous Core-Poly(d,l-Lactide-co-Glycolide) Shell Microcapsules With Mononuclear Cores by Internal Phase Separation: Optimization of Formulation Parameters. Abulateefeh SR; Alkawareek MY; Abdullah FR; Alkilany AM J Pharm Sci; 2017 Apr; 106(4):1136-1142. PubMed ID: 28057545 [TBL] [Abstract][Full Text] [Related]
7. Influence of polymer end-chemistry on the morphology of perfluorohexane polymeric microcapsules intended as ultrasound contrast agents. Mousnier L; Huang N; Morvan E; Fattal E; Tsapis N Int J Pharm; 2014 Aug; 471(1-2):10-7. PubMed ID: 24836666 [TBL] [Abstract][Full Text] [Related]
8. Controlled release of vancomycin from biodegradable microcapsules. Ozalp Y; Ozdemir N; Kocagöz S; Hasirci V J Microencapsul; 2001; 18(1):89-110. PubMed ID: 11201344 [TBL] [Abstract][Full Text] [Related]
9. Simplex lattice design for the optimization of the microencapsulation of a water soluble drug using poly(lactic acid) and poly(lactide co-glycolide) copolymer. Elkheshen S J Microencapsul; 1996; 13(4):447-62. PubMed ID: 8808781 [TBL] [Abstract][Full Text] [Related]
10. Different ratios of lactide and glycolide in PLGA affect the surface property and protein delivery characteristics of the PLGA microspheres with hydrophobic additives. Chung TW; Tsai YL; Hsieh JH; Tsai WJ J Microencapsul; 2006 Feb; 23(1):15-27. PubMed ID: 16830974 [TBL] [Abstract][Full Text] [Related]
11. Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro. Liu R; Huang SS; Wan YH; Ma GH; Su ZG Colloids Surf B Biointerfaces; 2006 Aug; 51(1):30-8. PubMed ID: 16814994 [TBL] [Abstract][Full Text] [Related]
12. Poly(D,L-lactide-co-glycolide) encapsulated poly(vinyl alcohol) hydrogel as a drug delivery system. Mandal TK; Bostanian LA; Graves RA; Chapman SR Pharm Res; 2002 Nov; 19(11):1713-9. PubMed ID: 12458678 [TBL] [Abstract][Full Text] [Related]
13. Sustained release microspheres of metoclopramide using poly(D,L-lactide-co-glycolide) copolymers. Elkheshen SA; Radwan MA J Microencapsul; 2000; 17(4):425-35. PubMed ID: 10898083 [TBL] [Abstract][Full Text] [Related]
14. Controlling the internal morphology of aqueous core-PLGA shell microcapsules: promoting the internal phase separation via alcohol addition. Abulateefeh SR; Al-Adhami GK; Alkawareek MY; Alkilany AM Pharm Dev Technol; 2019 Jul; 24(6):671-679. PubMed ID: 30556763 [TBL] [Abstract][Full Text] [Related]
15. Co-effect of aqueous solubility of drugs and glycolide monomer on in vitro release rates from poly(D,L-lactide-co-glycolide) discs and polymer degradation. Kim JM; Seo KS; Jeong YK; Hai BL; Kim YS; Khang G J Biomater Sci Polym Ed; 2005; 16(8):991-1007. PubMed ID: 16128233 [TBL] [Abstract][Full Text] [Related]
16. Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: effect of the protein and polymer properties and of the co-encapsulation of surfactants. Blanco D; Alonso MJ Eur J Pharm Biopharm; 1998 May; 45(3):285-94. PubMed ID: 9653633 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of core-shell microcapsules using PLGA and alginate for dual growth factor delivery system. Choi DH; Park CH; Kim IH; Chun HJ; Park K; Han DK J Control Release; 2010 Oct; 147(2):193-201. PubMed ID: 20647022 [TBL] [Abstract][Full Text] [Related]
18. Hydrophilized poly(lactide-co-glycolide) nanospheres with poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. Kim BK; Kim D; Cho SH; Yuk SH J Microencapsul; 2004 Nov; 21(7):697-707. PubMed ID: 15799220 [TBL] [Abstract][Full Text] [Related]
19. Influence of formulation parameters on the characteristics of poly(D, L-lactide-co-glycolide) microspheres containing poly(L-lysine) complexed plasmid DNA. Capan Y; Woo BH; Gebrekidan S; Ahmed S; DeLuca PP J Control Release; 1999 Aug; 60(2-3):279-86. PubMed ID: 10425333 [TBL] [Abstract][Full Text] [Related]
20. Microencapsulation using poly(DL-lactic acid). I: Effect of preparative variables on the microcapsule characteristics and release kinetics. Jalil R; Nixon JR J Microencapsul; 1990; 7(2):229-44. PubMed ID: 2329448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]