These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Design, synthesis, and in vitro cancer cell growth inhibition evaluation and antimalarial testing of trioxanes installed in cyclic 2-enoate substructures. Hossain MI; Świtalska M; Peng W; Takashima M; Wang N; Kaiser M; Wietrzyk J; Dan S; Yamori T; Inokuchi T Eur J Med Chem; 2013 Nov; 69():294-309. PubMed ID: 24056020 [TBL] [Abstract][Full Text] [Related]
5. Design, Synthesis, and Biological Evaluation of Novel 1,2,4-Trioxanes as Potential Antimalarial Agents. Gupta AK; Varshney K; Kumar V; Srivastava K; Pant AB; Puri SK; Saxena AK Arch Pharm (Weinheim); 2017 Apr; 350(3-4):. PubMed ID: 28207169 [TBL] [Abstract][Full Text] [Related]
6. Design, economical synthesis and antiplasmodial evaluation of vanillin derived allylated chalcones and their marked synergism with artemisinin against chloroquine resistant strains of Plasmodium falciparum. Sharma N; Mohanakrishnan D; Sharma UK; Kumar R; Richa ; Sinha AK; Sahal D Eur J Med Chem; 2014 May; 79():350-68. PubMed ID: 24747290 [TBL] [Abstract][Full Text] [Related]
7. In vitro and in vivo anti-malarial activity of plants from the Brazilian Amazon. Lima RB; Rocha e Silva LF; Melo MR; Costa JS; Picanço NS; Lima ES; Vasconcellos MC; Boleti AP; Santos JM; Amorim RC; Chaves FC; Coutinho JP; Tadei WP; Krettli AU; Pohlit AM Malar J; 2015 Dec; 14():508. PubMed ID: 26682750 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and study of cytotoxic activity of 1,2,4-trioxane- and egonol-derived hybrid molecules against Plasmodium falciparum and multidrug-resistant human leukemia cells. Reiter C; Capcı Karagöz A; Fröhlich T; Klein V; Zeino M; Viertel K; Held J; Mordmüller B; Emirdağ Öztürk S; Anıl H; Efferth T; Tsogoeva SB Eur J Med Chem; 2014 Mar; 75():403-12. PubMed ID: 24561670 [TBL] [Abstract][Full Text] [Related]
9. Design and Synthesis of Terephthalic Acid-Based Histone Deacetylase Inhibitors with Dual-Stage Anti-Plasmodium Activity. Stenzel K; Chua MJ; Duffy S; Antonova-Koch Y; Meister S; Hamacher A; Kassack MU; Winzeler E; Avery VM; Kurz T; Andrews KT; Hansen FK ChemMedChem; 2017 Oct; 12(19):1627-1636. PubMed ID: 28812327 [TBL] [Abstract][Full Text] [Related]
10. Design, synthesis, derivatization, and structure-activity relationships of simplified, tricyclic, 1,2,4-trioxane alcohol analogues of the antimalarial artemisinin. Cumming JN; Wang D; Park SB; Shapiro TA; Posner GH J Med Chem; 1998 Mar; 41(6):952-64. PubMed ID: 9526569 [TBL] [Abstract][Full Text] [Related]
11. Structure-activity relationship of new antimalarial 1-aryl-3-susbtituted propanol derivatives: Synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery. Quiliano M; Pabón A; Moles E; Bonilla-Ramirez L; Fabing I; Fong KY; Nieto-Aco DA; Wright DW; Pizarro JC; Vettorazzi A; López de Cerain A; Deharo E; Fernández-Busquets X; Garavito G; Aldana I; Galiano S Eur J Med Chem; 2018 May; 152():489-514. PubMed ID: 29754074 [TBL] [Abstract][Full Text] [Related]
13. Antiplasmodial profile of selected compounds from Malaria Box: in vitro evaluation, speed of action and drug combination studies. de Souza GE; Bueno RV; de Souza JO; Zanini CL; Cruz FC; Oliva G; Guido RVC; Aguiar ACC Malar J; 2019 Dec; 18(1):447. PubMed ID: 31888654 [TBL] [Abstract][Full Text] [Related]
14. Antimalarial efficacy of Pongamia pinnata (L) Pierre against Plasmodium falciparum (3D7 strain) and Plasmodium berghei (ANKA). Satish PVV; Sunita K BMC Complement Altern Med; 2017 Sep; 17(1):458. PubMed ID: 28893216 [TBL] [Abstract][Full Text] [Related]
15. Orally active 1,2,4-trioxanes: synthesis and antimalarial assessment of a new series of 9-functionalized 3-(1-arylvinyl)-1,2,5-trioxaspiro[5.5]undecanes against multi-drug-resistant plasmodium yoelii nigeriensis in mice. Singh C; Malik H; Puri SK J Med Chem; 2006 May; 49(9):2794-803. PubMed ID: 16640340 [TBL] [Abstract][Full Text] [Related]
16. In vitro antiplasmodial and cytotoxicity activities of crude extracts and major compounds from Goniothalamus lanceolatus. Kaharudin FA; Zohdi RM; Mukhtar SM; Sidek HM; Bihud NV; Rasol NE; Ahmad FB; Ismail NH J Ethnopharmacol; 2020 May; 254():112657. PubMed ID: 32045683 [TBL] [Abstract][Full Text] [Related]
17. Facile synthesis of vanillin-based novel bischalcones identifies one that induces apoptosis and displays synergy with Artemisinin in killing chloroquine resistant Plasmodium falciparum. Sharma UK; Mohanakrishnan D; Sharma N; Equbal D; Sahal D; Sinha AK Eur J Med Chem; 2018 Jul; 155():623-638. PubMed ID: 29929118 [TBL] [Abstract][Full Text] [Related]
18. Design and synthesis of quinoline-pyrimidine inspired hybrids as potential plasmodial inhibitors. Kayamba F; Malimabe T; Ademola IK; Pooe OJ; Kushwaha ND; Mahlalela M; van Zyl RL; Gordon M; Mudau PT; Zininga T; Shonhai A; Nyamori VO; Karpoormath R Eur J Med Chem; 2021 May; 217():113330. PubMed ID: 33744688 [TBL] [Abstract][Full Text] [Related]
19. Antiplasmodial activity of chloroquine analogs against chloroquine-resistant parasites, docking studies and mechanisms of drug action. de Souza NB; Carmo AM; da Silva AD; França TC; Krettli AU Malar J; 2014 Dec; 13():469. PubMed ID: 25440372 [TBL] [Abstract][Full Text] [Related]
20. Heme as trigger and target for trioxane-containing antimalarial drugs. Meunier B; Robert A Acc Chem Res; 2010 Nov; 43(11):1444-51. PubMed ID: 20804120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]